TOSHIBA CMOS Linear Integrated Circuit Silicon Monolithic

TC75S63TU

Single Operational Amplifier (Low Noise Operational Amplifier)

Features

- Low Noise. VNI = 7.8nV/ $\sqrt{ } \mathrm{Hz}$ (typ.) @ VDD $=3.3 \mathrm{~V}$
- Small Phase Delay. -2.5 degrees @VDD $=3.3 \mathrm{~V}$ (typ.), $\mathrm{f}=2 \mathrm{kHz}$
- Low-current supply. $500 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (typ.)
- Ultra-compact package.

Weight: 7 mg (typ.)

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SS }}$	6	V
Differential input voltage	$\mathrm{DV}_{\text {IN }}$	± 6	V
Input voltage	$\mathrm{V}_{\text {IN }}$	V_{DD} to V_{SS}	V
Output current	I OUT	± 4	mA
Power dissipation	P_{D}	$450(\mathrm{Note} 1)$	mW
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).
Note1: Mounted on a glass epoxy circuit board of $30 \mathrm{~mm} \times 30 \mathrm{~mm}$. Pad dimension of $35 \mathrm{~mm}^{2}$
Operating Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$	2.2 to 5.5	V

Note2: Do not use this product in a voltage follower circuit or outside the range of the common mode input voltage. (For the common mode input voltage, see DC Characteristics on Page 2). Failure to follow this instruction may cause voltage oscillation.
A higher load capacitance will increase the risk of voltage oscillation, even if this product is used within the range of the common mode input voltage. Allow sufficient capacitance value margin when designing your circuit and using this product to prevent voltage oscillation.

Start of commercial production
2009-09

Marking (top view)

Pin Connection (top view)

Electrical Characteristics

DC Characteristics ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Input offset voltage	V10	1	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega$	-	1	7	mV
Input offset current	1 IO	-	-	-	1	-	pA
Input bias current	1	-	-	-	1	-	pA
Common mode input voltage	CMVIN	2	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega$	0	-	2.4	V
Voltage gain (open loop)	GV	-	-	-	100	-	dB
Maximum output voltage	V_{OH}	3	$\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$	3.2	-	-	V
	V_{OL}	4	$\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$	-	-	0.1	
Common mode input signal rejection ratio	CMRR	2	$\mathrm{V}_{\text {IN }}=0$ to 2.4 V	60	80	-	dB
Supply voltage rejection ratio	SVRR	1	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V	60	80	-	dB
Supply current	IDD	5	-	-	500	650	$\mu \mathrm{A}$
Source current	Isource	6	-	1500	-	-	$\mu \mathrm{A}$
Sink current	Isink	7	-	1500	-	-	$\mu \mathrm{A}$

AC Characteristics ($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V} \mathrm{SS}=\mathrm{GND}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Equivalent input Noise Voltage	V_{NI}	-	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{GV}=40 \mathrm{~dB}$, $\mathrm{RS}=100 \Omega, R f=10 \mathrm{k} \Omega$	-	7.8	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Unity Gain Cross Frequency	f_{T}	-	$\mathrm{GV}=40 \mathrm{~dB}$	-	3.5	-	MHz
Phase delay	ϕ_{D}	8	$\mathrm{f}=2 \mathrm{kHz}$	-	-2.5	-	degrees

AC Characteristics ($\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V} \mathrm{SS}=-1.65 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
Slew Rate	SR	9	$\mathrm{G}_{\mathrm{V}}=12 \mathrm{~dB}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-	1.0	-	$\mathrm{V} / \mu \mathrm{s}$

Test Circuit

1. $\operatorname{SVRR}, \mathrm{V}_{\mathrm{IO}}$

2. $\mathrm{CMRR}, \mathrm{CMV}_{\mathrm{IN}}$

3. VOH

4. V_{OL}

- SVRR
- For each of the two $V_{D D}$ values, measure the $V_{\text {OUt }}$ value, as indicated below, and calculate the value of SVRR using the equation shown.
When $\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} 1$ and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OUT }} 1$
When $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} 2$ and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OUT }} 2$
$S V R R=20 \lambda 0 g\left(\left|\frac{V_{\text {OUT }} 1-V_{O U T}{ }^{2}}{V_{D D^{1}}-V_{D D}}\right| \times \frac{R_{S}}{R_{F}+R_{S}}\right)$
- V_{10}

Measure the value of $\mathrm{V}_{\text {OUT }}$ and calculate the value of $\mathrm{V}_{\text {IO }}$ using the following equation.
$V_{I O}=\left(V_{\text {OUT }}-\frac{V_{D D}}{2}\right) \times \frac{R_{S}}{R_{F}+R_{S}}$

- CMRR

Measure the VOUT value, as indicated below, and calculate the value of the CMRR using the equation shown.
When $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IN }} 1$ and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OUT }} 1$
When $\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IN }} 2$ and $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OUT}} 2$
$C M R R=20 \lambda o g\left(\left|\frac{V_{O U T} 1-V_{O U T}{ }^{2}}{V_{I N} 1-V_{I N}{ }^{2}}\right| \times \frac{R_{S}}{R_{F}+R_{S}}\right)$

- $\quad \mathrm{CMV}_{\mathrm{IN}}$

Input range within which the CMRR specification guarantees
$V_{\text {OUT }}$ value (as varied by the $\mathrm{V}_{\text {IN }}$ value).

- V_{OH}
$\mathrm{V}_{\mathrm{IN}} 1=\frac{\mathrm{VDD}}{2}-0.05 \mathrm{~V}$
$\mathrm{VIN}^{2}=\frac{\mathrm{VDD}}{2}+0.05 \mathrm{~V}$
- $V_{O L}$
$\mathrm{V}_{\mathrm{IN} 1}=\frac{\mathrm{V}_{\mathrm{DD}}}{2}+0.05 \mathrm{~V}$

V IN2 $=\frac{\mathrm{VDD}}{2}-0.05 \mathrm{~V}$
5. IDD

6.

8. ϕ_{D}
7. Isink

9.SR

- $\quad \mathrm{SR}$
$G_{V}=1+\frac{R_{F}}{R_{S}}=12 d B$
$\mathrm{SR}=\frac{\Delta \mathrm{t}}{\Delta \mathrm{V}}$

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

Package Dimension

SON5-P-0202-0.65S

BOTTOM VIEW

Weight: 7m g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Toshiba manufacturer:

Other Similar products are found below :
NCV33072ADR2G LM258AYDT LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7

