CMOS Linear Integrated Circuits Silicon Monolithic ## **TC75W70L8X** ### 1. Functional Description Dual Comparator #### 2. General This is a CMOS Input/Output full swing comparator with low operating voltage and low supply current. The comparator have low operating voltage V_{DD} = 1.3 V to 5.5 V and low supply current I_{DD} = 26 μA (typ.) @ V_{DD} = 1.5 V. Output circuit type is push-pull circuit. The package SOT-902 (1.6 mm \times 1.6 mm, t: 0.55 mmMAX) is ultra small, so that it is ideal for high-density assembly such as cellular phone. #### 3. Features - (1) Dual circuit, Input/Output full swing comparator - (2) Low operating voltage: $V_{DD} = 1.3 \text{ V}$ to 5.5 V - (3) Low supply current: $I_{DD} = 26 \mu A \text{ (typ.)} (@V_{DD} = 1.5 \text{ V})$ - (4) Ultra Small package: SOT-902 (1.6 mm \times 1.6 mm, t = 0.55 mmMAX) - (5) Low input bias current: 1 pA (typ.) - (6) Push-pull output circuit - (7) Single power supply operation ### 4. Packaging and Pin Assignment ## 5. Absolute Maximum Ratings (Note) (Unless otherwise specified, T_a = 25 °C) | Characteristics | Symbol | Note | Rating | Unit | |----------------------------|------------------|----------|------------------------------------|------| | Supply voltage | V_{DD} | | ±3.0 or 6.0 | V | | Differential input voltage | ΔV_{IN} | | ±6.0 | V | | Input voltage | V _{IN} | | V _{SS} to V _{DD} | V | | Output current | I _{OUT} | | ±35 | mA | | Power dissipation | P _D | (Note 1) | 300 | mW | | Operating temperature | T _{opr} | | -40 to 85 | °C | | Storage temperature | T _{stg} | | -55 to 125 | °C | Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). Note: Since this device is susceptible to latch-up, a phenomenon inherent to CMOS devices, follow these considerations: - Don't raise the voltage level of the output pins above V_{DD} or lower it below V_{SS}. Consider the power-on timing as well. - Ensure that any abnormal noise is not introduced into the device. Note 1: Mounted on an FR4 board. ## 6. Operating Ratings (Unless otherwise specified, T_a = 25 °C) | Characteristics | Symbol | Note | Rating | Unit | |-----------------|----------------------------------|------|----------------|------| | Supply voltage | V _{DD} | | 1.3 to 5.5 | V | | Supply voltage | V _{DD} ,V _{SS} | | ±0.65 to ±2.75 | V | #### 7. Electrical Characteristics ## 7.1. $V_{DD} = 3.0 \text{ V}$ (Unless otherwise specified, $T_a = 25 \text{ °C}$, $V_{SS} = GND$) | Characteristics | Symbol | Note | Test Condition | Test
Circuit | Min | Тур. | Max | Unit | |---------------------------------|---------------------|----------|------------------------------|-----------------|--|------|------|------| | Input offset voltage | V _{IO} | | _ | _ | | ±1 | ±6 | mV | | Input offset current | I _{IO} | | _ | | | 1 | | pА | | Input bias current | l _l | | _ | _ | (F) | 1 | | pА | | Common-mode input voltage range | V _{ICM} | | _ | _ | 0 |)/_ | 3.0 | V | | Supply current | I _{DD} | (Note 1) | _ | Fig.10.3 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 27 | 47 | μА | | Sink current | I _{SINK} | | V _{OL} = 0.5 V | Fig.10.2 | 9) | 18 | _ | mA | | Source current | I _{SOURCE} | | V _{OH} = 2.5 V | Fig.10.1 | \mathcal{I} | 15 | | mA | | Low-level output voltage | V _{OL} | | I _{SINK} = 5.0 mA | Fig.10.2 | > — | 0.15 | 0.30 | V | | High-level output voltage | V _{OH} | | I _{SOURCE} = 5.0 mA | Fig.10.1 | 2.70 | 2.85 | _ | V | | Propagation delay time (L/H) | t _{PLH} | | Over drive = 100 mV | Fig.10.4 | _ | 400 | / | ns | | Propagation delay time (H/L) | t _{PHL} | | Over drive = 100 mV | Fig.10.4 | _ / | 800 | | ns | | Response time (low-to-high) | t _{TLH} | | Over drive = 100 mV | Fig.10.4 | -6 | 14 | > _ | ns | | Response time (high-to-low) | t _{THL} | | Over drive = 100 mV | Fig.10.4 |)(| 14 |) — | ns | # 7.2. V_{DD} = 1.5 V (Unless otherwise specified, T_a = 25 °C, V_{SS} = GND) | Characteristics | Symbol | Note | Test Condition | Test
Circuit | Min | Тур. | Max | Unit | |---------------------------------|--------------------|----------|--|-----------------|------|------|------|------| | Input offset voltage | V _{IO} | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | (\wedge) |))— | ±1 | ±6 | mV | | Input offset current | I _{IO} | 4 | - | | / _ | 1 | _ | pА | | Input bias current | l _l | | \ | 17 | _ | 1 | _ | pА | | Common-mode input voltage range | V _{ICM} | | | 17- | 0 | _ | 1.5 | V | | Supply current | I _{DD} | (Note 1) | _ | Fig.10.3 | _ | 26 | 46 | μА | | Sink current | ISINK | \wedge | V _{OL} = 0.5 V | Fig.10.2 | 2.5 | 6.0 | _ | mA | | Source current | ISOURCE |)) | V _{OH} = 1.0 V | Fig.10.1 | 1.5 | 5.0 | _ | mA | | Low-level output voltage | V _{QL} | | I _{SINK} = 1.5 mA | Fig.10.2 | _ | 0.10 | 0.25 | V | | High-level output voltage | VoH | | I _{SOURCE} = 1.5 mA | Fig.10.1 | 1.25 | 1.40 | _ | V | | Propagation delay time (L/H) | t _{PLH} | ^ | Over drive = 100 mV | Fig.10.4 | _ | 400 | _ | ns | | Propagation delay time (H/L) | 7 t _{PHL} | | Over drive = 100 mV | Fig.10.4 | _ | 720 | _ | ns | | Response time (low-to-high) | t _{TLH} / | | Over drive = 100 mV | Fig.10.4 | _ | 20 | _ | ns | | Response time (high-to-low) | t _{THL} | | Over drive = 100 mV | Fig.10.4 | _ | 33 | _ | ns | Note 1: The current consumption of the device increases with its operating frequency. Ensure that its power dissipation does not exceed the rated allowable power dissipation. (Top View) ## 9. Characteristics Curves (Note) Fig. 9.1 V_{OL} - I_{SINK} Fig. 9.3 VOH - ISOURCE Fig. 9.2 Vol - Isink Fig. 9.4 VOH - ISOURCE Fig. 9.6 V_{OH} - T_a Fig. 9.10 Propagation delay time (L/H) t_{PLH} Fig. 9.11 Propagation delay time (H/L) t_{PHL} Fig. 9.13 Propagation delay time (H/L) t_{PHL} Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted. #### 10. Test Circuits Fig. 10.5 Propagation delay time (L/H) t_{PLH} wave Fig. 10.6 Propagation delay time (H/L) t_{PHL} wave Rev.1.0 ## **Package Dimensions** Unit: mm Weight: 0.0031 g (typ.) Rev.1.0 #### RESTRICTIONS ON PRODUCT USE - Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice. - This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission. - Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS. - PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative. - Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part. - Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations. - The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise. - ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT. - Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations. - Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS. ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Analog Comparators category: Click to view products by Toshiba manufacturer: Other Similar products are found below: SC2903VDR2G LM2901SNG LM339SNG 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G LM2903M/TR MAX49140AXK/V+T LM2903F-E2 MCP6544-EP LM2901EDR2G TS391SN2T1G LM111JG LM239APT HMC675LC3CTR 5962-8765801PA MAX9024AUD+ LT6700HVIS6-2#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX LTC1440IMS8#PBF AZV331KSTR-G1 LTC1841IS8#PBF LTC1440CN8#PBF LTC1542CS8#PBF LTC1445CS#PBF TL331VSN4T3G LT6700IDCB-1#TRMPBF LTC1042CN8#PBF LTC1540CMS8#PBF LT6703CDC-2#TRMPBF ADCMP607BCPZ-R7 LT1720CDD#PBF LTC1040CN#PBF LT6700MPDCB-1#TRMPBF LT6700IDCB-3#TRMPBF LTC1440IS8#PBF S-89431ACNC-HBVTFG CMP402GSZ-REEL NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL