TOSHIBA CD process Integrated Circuit Silicon Monolithic

TC78H670FTG

Clock-in and Serial controlled Bipolar Stepping Motor Driver

1. Outline

The TC78H670FTG is a two-phase bipolar stepping motor driver using a PWM chopper which incorporate DMOS with low on-resistance in output transistors. The clock-in decoder is built in.

P-VQFN16-0303-0.50-001

Weight: 22.9 mg (typ.)

2. Features

- Built-in Dual H Bridges, Capable of controlling 1 bipolar stepping motor
- PWM controlled constant-current drive
- Power supply operating voltage: 2.5 V to 16.0 V
- Output current ratings: 2.0 A (max)
- Low on-resistance (High + Low side $=0.48 \Omega$ (typ.)) MOSFET output stage
- Allows full, half, quarter, $1 / 8,1 / 16,1 / 32,1 / 64,1 / 128$ step operation
- Built-in Sense resistor less current control architecture (Advanced Current Detection System)
- Multi error detect functions (Thermal shutdown (TSD), Over current (ISD), motor load open (OPD) and Under voltage lockout(UVLO))
- Error detection (TSD/ISD/OPD) flag output function
- Built-in VCC regulator for internal circuit
- Chopping frequency of a motor can be adjusted by external resistor
- Small QFN package with thermal pad (16pin)

Note: Please be careful about thermal conditions during using.
Note: It is possible to detect OPD only when Serial mode is selected.

3. Pin Assignment

(Top View)

Note: Please solder the corner pads and the rear thermal pad of the QFN package, to the GND pattern of the PCB.

4. Pin Description

Pin No.	STBY = Low	STBY = High		Pin description
		CLK-IN mode	Serial mode	
1	MODE3	CW-CCW	-	MODE3: Step mode select pin CW-CCW: Current direction setup pin
2	AGND	\leftarrow	\leftarrow	GND pin
3	VM	\leftarrow	\leftarrow	Motor power supply input pin
4	PGND_A	\leftarrow	\leftarrow	Ach Power GND pin
5	OUT_A+	\leftarrow	\leftarrow	A channel motor output(+) pin
6	OUT_A-	\leftarrow	\leftarrow	A channel motor output(-) pin
7	OUT_B-	\leftarrow	\leftarrow	B channel motor output(-) pin
8	OUT_B+	\leftarrow	\leftarrow	B channel motor output(+) pin
9	PGND_B	\leftarrow	\leftarrow	Bch Power GND pin
10	VREF	\leftarrow	\leftarrow	Current threshold reference pin
11	OSCM	\leftarrow	\leftarrow	Internal oscillator frequency setting pin
12	STBY	\leftarrow	\leftarrow	Standby pin
13	EN/ERR	\leftarrow	\leftarrow	Enable(Motor output ON/OFF) pin / Error detection flag output pin
14	MODE0	UP-DW	S_DATA	MODEO: Step mode select pin UP-DW: Step mode setting pin S_DATA: Serial data input pin
15	MODE1	SET_EN	LATCH	MODE1: Step mode select pin SET_EN: Step mode setting enable pin LATCH: Latch enable pin
16	MODE2	CLK	S_CLK	MODE2: Step mode select pin CLK: Step Clock input pin S_CLK: Serial clock input pin

5. Block Diagram

Note: Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purpose.

Note: All the grounding wires should be solid patterns and be externally terminated at only one point. Also, a grounding method should be considered for efficient heat dissipation. Careful attention should be paid to the layout of the output, VM and GND traces, to avoid short circuits across output pins or to the power supply or ground. If such a short circuit occurs, the device may be permanently damaged. Also, the utmost care should be taken for pattern designing and implementation of the device since it has power supply pins (VM, AGND, PGND_x, OUT_x+ and OUT_x- $(x=A$ or $B))$ through which a particularly large current may run. If these pins are wired incorrectly, an operation error may occur or the device may be destroyed. The logic input pins must also be wired correctly. Otherwise, the device may be damaged owing to a current running through the IC that is larger than the specified current. Careful attention should be paid to design patterns and mounting.

6. Input / Output Equivalent Circuit

Pin name	Equivalent circuit
MODE3 / CW-CCW MODE2 / CLK / S_CLK MODE1 / SET_EN / LATCH MODEO / UP-DW / S_DATA STBY	MODE3 / CW-CCW MODE2 / CLK / S_CLK MODE1 / SET_EN / LATCH MODEO / UP-DW / S_DATA STBY
EN / ERR	EN / ERR
VREF	VREF
OSCM	
OUT_A+ OUT_A- OUT_B+ OUT_B- PGND_A PGND_B	

Note: The equivalent circuit diagrams may be simplified for explanatory purposes.

7. Control Mode Select Function

The MODE0-3 pins set Serial mode or CLK-IN mode.
The control mode is set up by the input state of the MODE0-3 pins after releasing standby mode.

MODE3 pin input	MODE2 pin input	MODE1 pin input	MODE0 pin input	Function
L	L	L	L	Serial mode
Other than the above				CLK-IN mode

Characteristics	Symbol	Test condition	Min	Typ.	Max	Unit
Mode setting Setup time	tmodesu	To STBY edge	1	-	-	$\mu \mathrm{s}$
Mode setting Data hold time	tmodeho	From STBY edge	100	-	-	$\mu \mathrm{s}$

8. Functional Description 1 (for CLK-IN mode)

8.1. CLK Function

Each up-edge of the CLK signal will shift the motor's electrical angle per step.

CLK pin input	Function
Up-edge	Shifts the electrical angle per step
Down-edge	(State of the electrical angle does not change)

8.2. ENABLE Function

The EN pin controls the ON and OFF of the stepping motor outputs. Motor operation starts and stops by setting H and L to the EN pin.
(When the EN pin is set to L(OFF), all of the MOSFETs turn off and become high impedance (hereafter, Hi-Z).)
Setting the EN pin to L, and avoiding the motor to operate during VM power-on and power-off (i.e., outside of the operating voltage range) is recommended. Then, switch the EN pin to H after the VM reaches the target voltage and becomes stable. The EN pin should input High level through a resistor.

EN pin input	Function
L	OFF (Hi-Z)
H	ON (Normal operation mode)

8.3. CW-CCW Function

CW-CCW pin controls the rotation direction of the motor.

CW-CCW pin input	Function
L	Counter clockwise operation (CCW)
H	Clockwise operation (CW)

8.4. Step Resolution Select Function

Step resolution is set up. TC78H670FTG has the two modes, Variable Mode and Fixed Mode. These modes are set up by the input state of MODEO-3 pins after releasing standby mode.

Variable Mode: Variable mode can be started with Full step resolution and changed step resolution during motor operating
Fixed Mode: Fixed mode can be started with the mode user selected and continued it during motor operating

MODE3 pin input	MODE2 pin input	MODE1 pin input	MODEO pin input	Mode	Function
L	L	L	H	Variable Mode	Full step resolution <-> $1 / 2$ step resolution (2-phase excitation) (1-2-phase excitation)
L	L	H	L		Full step resolution <-> 1/4 step resolution (2-phase excitation) (W1-2-phase excitation)
L	L	H	H		Full step resolution <-> 1/8 step resolution (2-phase excitation) (2W1-2-phase excitation)
L	H	L	L		$\begin{array}{l}\text { Full step resolution <-> } \\ \text { (2-phase excitation) }\end{array}$ (4W1-2-phase excitation)
L	H	L	H		Full step resolution <-> $1 / 32$ step resolution (2-phase excitation) (8W1-2-phase excitation)
L	H	H	L		Full step resolution <-> 1/64 step resolution (2-phase excitation) (16W1-2-phase excitation)
L	H	H	H		Full step resolution <-> 1/128 step resolution (2-phase excitation) (32W1-2-phase excitation)
H	L	L	L	Fixed Mode	Full step resolution (2-phase excitation)
H	L	L	H		1/2 step resolution (1-2-phase excitation)
H	L	H	L		1/4 step resolution (W1-2-phase excitation)
H	L	H	H		1/8 step resolution (2W1-2-phase excitation)
H	H	L	L		1/16 step resolution (4W1-2-phase excitation)
H	H	L	H		1/32 step resolution (8W1-2-phase excitation)
H	H	H	L		1/64 step resolution (16W1-2-phase excitation)
H	H	H	H		1/128 step resolution (32W1-2-phase excitation)

When Step mode is changed during operating, Step resolution can be set by SET_EN pin and UP-DW pin. Step mode is changed synchronously with Step Clock.

SET_EN pin input	Function
L	Setting step mode is invalid
H	Setting step mode is available

UP-DW pin input	Function
L	Change step mode to high resolution
H	Change step mode to Low resolution

[Example: Full Step <-> 1/8 Step]

8.5. Timing Chart of Step Resolution Setting and Initial Angle

The arrow in the below figures indicates the timing of initial angle.
[Full step resolution]

[1/2 step resolution]

Note: Timing charts may be simplified for explanatory purpose.
[1/4 step resolution]

Note: Timing charts may be simplified for explanatory purpose.

lout (A)
out (B)

Note: Timing charts may be simplified for explanatory purpose.

[1/16 step resolution

Note: Timing charts may be simplified for explanatory purpose.

8.6. Step Setting and Current Percentage

Current (\%)	1/1	1/2	1/4	1/8	1/16	1/32	1/64	1/128
100\%	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
99\%					\bigcirc	\bigcirc	\bigcirc	\bigcirc
98\%				-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
97\%					\bigcirc	\bigcirc	\bigcirc	\bigcirc
96\%				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
95\%							\bigcirc	\bigcirc
94\%						\bigcirc	\bigcirc	\bigcirc
93\%							\bigcirc	\bigcirc
92\%						\bigcirc	\bigcirc	\bigcirc
91\%							\bigcirc	-
90\%					\bigcirc	\bigcirc	\bigcirc	\bigcirc
89\%							\bigcirc	-
88\%						-	\bigcirc	\bigcirc
87\%							\bigcirc	\bigcirc
86\%						\bigcirc	\bigcirc	\bigcirc
85\%								\bigcirc
84\%							\bigcirc	\bigcirc
83\%				-	-	-	\bigcirc	\bigcirc
82\%							\bigcirc	-
81\%								-
80\%						\bigcirc	\bigcirc	\bigcirc
79\%							\bigcirc	\bigcirc
78\%								\bigcirc
77\%					\bigcirc	\bigcirc	\bigcirc	\bigcirc
76\%							\bigcirc	\bigcirc
75\%								\bigcirc
74\%						\bigcirc	\bigcirc	\bigcirc
73\%								\bigcirc
72\%							\bigcirc	-
71\%		\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc
70\%								\bigcirc
69\%							\bigcirc	\bigcirc
68\%								\bigcirc
67\%						\bigcirc	-	\bigcirc
66\%								\bigcirc
65\%							\bigcirc	\bigcirc
64\%								\bigcirc
63\%					-	\bigcirc	\bigcirc	\bigcirc
62\%							\bigcirc	\bigcirc
61\%								\bigcirc
60\%						\bigcirc	\bigcirc	\bigcirc
59\%								\bigcirc
58\%							-	\bigcirc
57\%								\bigcirc
56\%				\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
55\%								\bigcirc
53\%							\bigcirc	\bigcirc
52\%								\bigcirc
14								2021-02-09

TC78H670FTG

Current (\%)	1/1	1/2	1/4	1/8	1/16	1/32	1/64	1/128
51\%						-	-	-
50\%								\bigcirc
49\%							\bigcirc	\bigcirc
48\%								\bigcirc
47\%					\bigcirc	-	\bigcirc	\bigcirc
46\%								\bigcirc
45\%							-	\bigcirc
44\%								\bigcirc
43\%						\bigcirc	\bigcirc	\bigcirc
42\%								-
41\%							-	\bigcirc
39\%								\bigcirc
38\%			\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
37\%								\bigcirc
36\%							\bigcirc	\bigcirc
35\%								\bigcirc
34\%						\bigcirc	\bigcirc	\bigcirc
33\%								\bigcirc
31\%							\bigcirc	\bigcirc
30\%								-
29\%					-	\bigcirc	-	\bigcirc
28\%								\bigcirc
27\%							-	\bigcirc
25\%						\bigcirc		\bigcirc
24\%							-	\bigcirc
23\%								\bigcirc
22\%							-	\bigcirc
21\%								\bigcirc
20\%				\bigcirc	\bigcirc	○	\bigcirc	\bigcirc
18\%								\bigcirc
17\%							\bigcirc	\bigcirc
16\%								\bigcirc
15\%						\bigcirc	\bigcirc	\bigcirc
13\%								\bigcirc
12\%							\bigcirc	\bigcirc
11\%								-
10\%					\bigcirc	\bigcirc	\bigcirc	\bigcirc
9\%								\bigcirc
7\%							\bigcirc	\bigcirc
6\%								\bigcirc
5\%						\bigcirc	\bigcirc	\bigcirc
4\%								\bigcirc
2\%							\bigcirc	\bigcirc
1\%								\bigcirc
0\%		○	\bigcirc	○	○	○	○	\bigcirc

8.7. Step Resolution and Set Current

STEP	1/128		1/64		1/32		1/16		1/8		1/4		1/2		Full	
-	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Ach } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \end{aligned}$	Ach (\%)	Bch (\%)	$\begin{aligned} & \text { Ach } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ach } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & (\%) \\ & \hline \end{aligned}$
$\theta 0$	100	0	100	0	100	0	100	0	100	0	100	0	100	0		
$\theta 1$	100	1														
$\theta 2$	100	2	100	2												
$\theta 3$	100	4														
$\theta 4$	100	5	100	5	100	5										
$\theta 5$	100	6														
$\theta 6$	100	7	100	7												
$\theta 7$	100	9														
$\theta 8$	100	10	100	10	100	10	100	10								
$\theta 9$	99	11														
$\theta 10$	99	12	99	12												
$\theta 11$	99	13														
$\theta 12$	99	15	99	15	99	15										
$\theta 13$	99	16														
$\theta 14$	99	17	99	17												
$\theta 15$	98	18														
$\theta 16$	98	20	98	20	98	20	98	20	98	20						
017	98	21														
$\theta 18$	98	22	98	22												
$\theta 19$	97	23														
020	97	24	97	24	97	24										
021	97	25														
$\theta 22$	96	27	96	27												
$\theta 23$	96	28														
024	96	29	96	29	96	29	96	29								
$\theta 25$	95	30														
$\theta 26$	95	31	95	31												
$\theta 27$	95	33														
$\theta 28$	94	34	94	34	94	34										
$\theta 29$	94	35														
$\theta 30$	93	36	93	36												
$\theta 31$	93	37														
$\theta 32$	92	38	92	38	92	38	92	38	92	38	92	38				
$\theta 33$	92	39														
$\theta 34$	91	41	91	41												
$\theta 35$	91	42														
$\theta 36$	90	43	90	43	90	43										
$\theta 37$	90	44														
$\theta 38$	89	45	89	45												
$\theta 39$	89	46														
$\theta 40$	88	47	88	47	88	47	88	47								
$\theta 41$	88	48														

TC78H670FTG

STEP	1/128		1/64		1/32		1/16		1/8		1/4		1/2		Full	
-	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)	Ach (\%)	Bch (\%)
$\theta 42$	87	49	87	49												
$\theta 43$	86	50														
$\theta 44$	86	51	86	51	86	51										
$\theta 45$	85	52														
$\theta 46$	84	53	84	53												
$\theta 47$	84	55														
$\theta 48$	83	56	83	56	83	56	83	56	83	56						
$\theta 49$	82	57														
$\theta 50$	82	58	82	58												
051	81	59														
$\theta 52$	80	60	80	60	80	60										
$\theta 53$	80	61														
$\theta 54$	79	62	79	62												
$\theta 55$	78	62														
$\theta 56$	77	63	77	63	77	63	77	63								
$\theta 57$	77	64														
$\theta 58$	76	65	76	65												
$\theta 59$	75	66														
$\theta 60$	74	67	74	67	74	67										
061	73	68														
$\theta 62$	72	69	72	69												
$\theta 63$	72	70														
$\theta 64$	71	71	71	71	71	71	71	71	71	71	71	71	71	71	100	100
$\theta 65$	70	72														
$\theta 66$	69	72	69	72												
$\theta 67$	68	73														
$\theta 68$	67	74	67	74	67	74										
$\theta 69$	66	75														
$\theta 70$	65	76	65	76												
$\theta 71$	64	77														
$\theta 72$	63	77	63	77	63	77	63	77								
$\theta 73$	62	78														
$\theta 74$	62	79	62	79												
$\theta 75$	61	80														
$\theta 76$	60	80	60	80	60	80										
$\theta 77$	59	81														
$\theta 78$	58	82	58	82												
$\theta 79$	57	82														
$\theta 80$	56	83	56	83	56	83	56	83	56	83						
$\theta 81$	55	84														
$\theta 82$	53	84	53	84												
$\theta 83$	52	85														
$\theta 84$	51	86	51	86	51	86										
$\theta 85$	50	86														

TC78H670FTG

STEP	1/128		1/64		1/32		1/16		1/8		1/4		1/2		Full	
-	Ach (\%)	Bch (\%)	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & (\%) \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$	Ach (\%)	$\begin{aligned} & \hline \text { Bch } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Ach } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Bch } \\ & \text { (\%) } \\ & \hline \end{aligned}$
$\theta 86$	49	87	49	87												
$\theta 87$	48	88														
$\theta 88$	47	88	47	88	47	88	47	88								
$\theta 89$	46	89														
$\theta 90$	45	89	45	89												
$\theta 91$	44	90														
$\theta 92$	43	90	43	90	43	90										
$\theta 93$	42	91														
$\theta 94$	41	91	41	91												
$\theta 95$	39	92														
$\theta 96$	38	92	38	92	38	92	38	92	38	92	38	92				
$\theta 97$	37	93														
$\theta 98$	36	93	36	93												
$\theta 99$	35	94														
$\theta 100$	34	94	34	94	34	94										
$\theta 101$	33	95														
$\theta 102$	31	95	31	95												
$\theta 103$	30	95														
$\theta 104$	29	96	29	96	29	96	29	96								
$\theta 105$	28	96														
$\theta 106$	27	96	27	96												
$\theta 107$	25	97														
$\theta 108$	24	97	24	97	24	97										
$\theta 109$	23	97														
$\theta 110$	22	98	22	98												
$\theta 111$	21	98														
$\theta 112$	20	98	20	98	20	98	20	98	20	98						
$\theta 113$	18	98														
$\theta 114$	17	99	17	99												
$\theta 115$	16	99														
$\theta 116$	15	99	15	99	15	99										
0117	13	99														
$\theta 118$	12	99	12	99												
$\theta 119$	11	99														
$\theta 120$	10	100	10	100	10	100	10	100								
$\theta 121$	9	100														
$\theta 122$	7	100	7	100												
$\theta 123$	6	100														
$\theta 124$	5	100	5	100	5	100										
$\theta 125$	4	100														
$\theta 126$	2	100	2	100												
$\theta 127$	1	100														
$\theta 128$	0	100	0	100	0	100	0	100	0	100	0	100	0	100		

9. Functional Description 2 (for Serial mode)

Under the serial mode, it performs setting and motor control in the following 32-bit format.
For the motor control, each current value is set in the serial setting, and the output is updated to the set current value at the timing of the LATCH signal.

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
MDT A0	MDT A1	PHA	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	-	-	-

D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
MDT B0	MDT _B1	PHB	CB0	CB1	CB2	CB3	CB4	CB5	CB6	CB7	CB8	CB9	TRQ 0	TRQ 1	OPD

Note: Every issuing a command, the current setting transfers by one step.

9.1. Register

The registers to use the serial control are shown below.

9.1.1. PHx ($\mathrm{x}=\mathrm{A}$ or B)

The polality of the output current can be selected by PHx registers for each channel.

PHx	Function
L	Setting the direction of the output current to minus * Default
H	Setting the direction of the output current to plus

9.1.2. Cx0 to Cx 9 ($\mathrm{x}=\mathrm{A}$ or B)

The output of each channel's DAC for current limitation can be set by Cx 0 to Cx 9 registers. The relation between Setting DAC and the output current (lout) are shown below.

$$
\text { lout }(\operatorname{Max})=\operatorname{Vref}(\mathrm{V}) \times \frac{\mathrm{Cx}[9: 0]}{1023} \times \text { Setting torque by the torque function }(\%)
$$

9.1.3. TRQ0 and TRQ1

The value of the motor torque can be set by TRQ0 and TRQ1 registers.

TRQ1	TORQ0	Function
L	L	Torque setting: 100% * Default
L	H	Torque setting: 75%
H	L	Torque setting: 50%
H	H	Torque setting: 25%

9.1.4. OPD

An ON/OFF of the open detection function of motor output pins can be switched by OPD register.

OPD	Function
L	Open detection OFF \quad * Default
H	Open detection ON

9.1.5. Selectable Mixed Decay Function MDT_x0 and MDT_x1 (x = A or B)

The Selectable Mixed Decay can adjust the current regeneration amount during the period of current regeneration. Though the Mixed Decay is determined by controlling 2 different types of Decay (Fast Decay and Slow Decay), this function enables the user to select the ratio of the Mixed Decay using MDT_x0 and MDT_x1 register.

MDT_x1	MDT_x0	Function
L	L	Fast Decay: 37.5\% (Fast Decay $=$ OSCM $\times 6$) * Default
L	H	Fast Decay: 75\%
H	L	Fast Decay: 50\%
H	H	Fast Decay only

Note: $\mathrm{X}=\mathrm{A}$ or B
Note: Decay control is controlled in order of Charge, Slow Decay and Fast Decay.
Note: The blanking time(AtBLK) is also set to prevent an incorrect operation in the NF detection (the motor current reaches the set current value (NFth))..
Note: Timing charts may be simplified for explanatory purpose.
9.1.5.1. Mixed Decay Waveform (Current Waveform) *Charge \rightarrow Slow Decay \rightarrow Fast Decay

Note: Timing charts may be simplified for explanatory purpose.

9.1.5.2. Constant Current PWM Function and Timings *Charge \rightarrow Slow Decay \rightarrow Fast Decay

If the NF is detected during the early timing of the fchop cycle, the Slow Decay will be longer.

If the NF is detected during the late timing of the fchop cycle, the Slow Decay will be shorter.

The Charge period (the time until the motor current reaches the set current value) is determined by the operating status. Therefore the NF detection timing (the motor current reaches the set current value) with the chopping cycle (fchop) may change. If NF is detected in the early period of the fchop cycle, the Slow Decay will be longer. If NF is detected in the late period of the fchop cycle, the Slow Decay will be shorter, as shown above.

Note: \quad The chopping cycle is determined as: fchop - (Charge + Fast Decay $)=$ Slow Decay (Fast Decay ratio can be changed by MDT_x0 and MDT_x1 ($\mathrm{x}=\mathrm{A}$ or B) registers setting.)

If NF is detected within the MDT setting, Decay sequence will only be Fast Decay.(Slow Decay does not appear.)

Note: Timing charts may be simplified for explanatory purpose.

9.1.5.3. Mixed Decay current waveform *Charge \rightarrow Slow Decay \rightarrow Fast Decay

- When the next current step is higher:

- When Charge Period is More Than 1 fchop Cycle:

When the Charge period is longer than fchop cycle, the Charge period extends until the motor current reaches the NF threshold. Once the current reaches the next current step, then the sequence goes on to Decay mode.

- When the Next Current Step is lower:

Note: Timing charts may be simplified for explanatory purpose.

9.2. Serial Setting Example when driving a motor

Serial setting example for motor operation is shown below.
The motor operates with full step resolution by transmitting from the 1st to 4th commands repeatedly.
1st Command

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0

D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0

2nd Command

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0

D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0

3rd Command

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0

D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0

4th Command

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0

D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0

10. Common Function (CLK-IN Mode and Serial Mode)

10.1. Error Function (Error detect flag output)

When TC78H670FTG detects some errors, ERR pin outputs low level to peripheral block. Since ERR pin and EN pin share the function, the below peripheral circuit between TC78H670FTG and HOST MCU should be inserted. EN pin should input High level through a resistor.
In normal status, since the internal MOSFET is OFF, the level of ERR pin is equal to the EN control voltage from outside. When the error function (Thermal shutdown (TSD), Over current (ISD), or motor load open (OPD)) occurs, ERR pin will become Low (the internal MOSFET is ON). When the error detection is released by reasserting the VM power supply or setting the device to STANDBY mode, ERR pins show "normal status".

Note: This figure may be simplified for explanatory purpose.
Note: It is possible to detect OPD only when Serial mode is selected.

ERR pin output	Function
H (Pull-up)	Normal status (Normal operation)
L	Detect error status (ISD, TSD, OPD)

After detecting TSD detection: TC78H670FTG draws out currents of motor by Fast mode. If the output current is zerodetected or for 1 ms at maximum, the output becomes $\mathrm{Hi}-\mathrm{Z}$.

After detecting ISD detection: In H Bridge high-side (Pch DMOS) detection, TC78H670FTG draws out currents of motor by Slow mode on low-side. The output after 80 ms (typ.) becomes Hi-Z. In H Bridge low-side (Nch DMOS) detection, it draws out by Slow mode on high-side.

Note: Above times are reference values, and are not guaranteed.

10.2. STANDBY Function

It is possible to switch to Standby mode by STBY pin.

STBY pin input	Function	MEMO
L	Standby mode	Electrical angle: 45°
H	Normal operation	-

Note: When STBY pin is Low, TC78H670FTG stops supplying the power to logic circuit. Therefore, Logic circuit is reset and Electrical angle and Step mode are initialized.

If the output current is zero-detected, the operation mode enters into the standby mode after $100 \mu \mathrm{~s}$. The mode enters into the standby mode forcedly after $1 \mathrm{~ms}(\max)$ from STBY=L.

Note: Above times are reference values, and are not guaranteed.

11. Output Transistor Function Mode

Charge mode
A current flows into the motor coil.

Slow mode
A current circulates around the motor coil and this device.

$$
x=A \text { or } B
$$

Fast mode
The energy of the motor coil is fed back to the power.

Note: The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

11.1. Output Transistor Function

MODE	U1	U2	L1	L2
Charge	ON	OFF	OFF	ON
Slow	OFF	OFF	ON	ON
Fast	OFF	ON	ON	OFF

Note: This table shows an example of when the current flows as indicated by the arrows in the figures shown above. If the current flows in the opposite direction, refer to the following table.

MODE	U1	U2	L1	L2
Charge	OFF	ON	ON	OFF
Slow	OFF	OFF	ON	ON
Fast	ON	OFF	OFF	ON

This IC controls the motor current to be constant by changing 3 modes listed above automatically

Note: To eliminate shoot-through current that flows from supply to ground due to the simultaneous conduction of high side and low side transistors in the bridge output, a dead time (100ns (Reference value)) is generated in this IC when transistors switch from on to off, or vice versa.

12. Calculation of the Predefined Output Current

The peak output current (Setting current value) can be set via the reference voltage (Vref), as follows:

$$
\text { Iout }(\operatorname{Max})=1.1 \times \operatorname{Vref}(V)
$$

13. OSCM Oscillation Frequency and Chopping Frequency

The OSCM oscillation frequency (fOSCM) and chopping frequency (fchop) can be adjusted by the external resistor (ROSC) connecting to OSCM pin.

ROSC[k $\Omega]$	fOSCM $[k H z]$ (typ.)	fchop[kHz](typ.)
18	3290	206
22	2691	168
30	1982	124
39	1526	95
47	1266	79
56	1064	66
75	795	50
91	656	41

If chopping frequency is raised, ripple of current will become small and wave-like reproducibility will improve. However, the gate loss inside IC goes up and generation of heat becomes large.
By lowering chopping frequency, reduction in generation of heat is expectable. However, ripple of current may become large.

It is a standard about 70 kHz . A setup in the range of 50 kHz to 100 kHz is recommended.
14. Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}^{\mathbf{\circ}} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit	Remarks
Motor output voltage	Vout	20	V	Outputs are OFF
		18	V	Outputs are ON
Motor power supply (non-active)	VM	20	V	STBY pin = L
Motor power supply (active)		-0.4 to 18	V	STBY pin $=\mathrm{H}$
Motor output current	Iout	2.0	A	(Note 1)
Logic input voltage	VIN(H)	6.0	V	-
	$\mathrm{VIN}(\mathrm{L})$	-0.4	V	-
ERR output pin voltage	VLO	6.0	V	-
ERR output pin inflow current	ILO	6.0	mA	-
Power dissipation	PD	1.79	W	(Note 2)
Operating temperature	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$	-
Storage temperature	Tstg	-55 to 150	${ }^{\circ} \mathrm{C}$	-
Junction temperature	Tj(max)	150	${ }^{\circ} \mathrm{C}$	-

Note1: Usually, the maximum current value at the time should use 70% or less of the absolute maximum ratings for a standard on thermal rating. The maximum output current may be further limited in view of thermal considerations, depending on ambient temperature and board conditions.

Note2: When mounted on the board (JEDEC 4 layers) $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
When Ta exceeds $25^{\circ} \mathrm{C}$, it is necessary to do the derating with $14.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Ta: Ambient temperature
Topr: Ambient temperature while the IC is active
Tj : Junction temperature while the IC is active.
The maximum junction temperature is limited by the thermal shutdown (TSD) circuitry. It is advisable to keep the maximum current below a certain level so that the maximum junction temperature, Tj (MAX), will not exceed $120^{\circ} \mathrm{C}$.

Caution) Absolute maximum ratings
The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings. Exceeding the rating (s) may cause device breakdown, damage or deterioration, and may result in injury by explosion or combustion.
The value of even one parameter of the absolute maximum ratings should not be exceeded under any circumstances. The TC78H670FTG does not have overvoltage detection circuit. Therefore, the device is damaged if a voltage exceeding its rated maximum is applied.
All voltage ratings, including supply voltages, must always be followed. The other notes and considerations described later should also be referred to.
15. Operating Range ($\mathbf{~} \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Min	Typ.	Max	Unit	Remarks
Motor power supply	VM	2.5	-	16.0	V	-
Motor output current	Iout	-	1.1	2.0	A	(Note 1)
ERR pin output voltage	VLO	-	-	5.5	V	-
Vref reference voltage	Vref	0	-	1.8	V	-

Note1: Maximum current for actual usage may be limited by the operating circumstances such as operating conditions (exciting mode, operating time, and so on), ambient temperature, and heat conditions (board condition and so on).

16. Electrical Specifications 1

($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VM}=2.5$ to 16 V unless otherwise specified)

Characteristics		Symbol	Test condition	Min	Typ.	Max	Unit
Logic input voltage	HIGH	$\mathrm{VIN}(\mathrm{H})$	Logic input (Note1)	1.5	-	5.5	V
	LOW	VIN(L)	Logic input (Note1)	0	-	0.7	V
Logic input hysteresis voltage		VIN(HYS)	Logic input (Note1)	-	60	-	mV
Logic input current	HIGH	IIN(H)	$\mathrm{VIN}(\mathrm{H})=3.3 \mathrm{~V}$	-	33	45	$\mu \mathrm{A}$
	LOW	IIN(L)	$\mathrm{VIN}(\mathrm{L})=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
ERR pin output voltage	LOW	VOL(LO)	$\mathrm{IOL}=5 \mathrm{~mA}$, output $=\mathrm{L}$	-	-	0.5	V
Current consumption		IM1	Output pins = open Standby mode	-	-	0.1	$\mu \mathrm{A}$
		IM2	Output pins = open EN pin = L in releasing Standby mode	-	2.8	3.5	mA
		IM3	Output pins = open Full step resolution fCLK $=75 \mathrm{kHz}$	-	3.3	4.3	mA
Output leakage current	High-side	IOH	$\mathrm{VM}=18 \mathrm{~V}$, Vout $=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
	Low-side	IOL	$\mathrm{VM}=$ Vout $=18 \mathrm{~V}$	-1	-	-	$\mu \mathrm{A}$
Motor current channel differential		Δ lout1	Current differential between Ch	-5	0	5	\%
Motor current setting accuracy		Δ lout2	lout $=1.1 \mathrm{~A}$	-5	0	5	\%
Motor output ON resistance (High side + Low side)		Ron($\mathrm{H}+\mathrm{L}$)	$\begin{gathered} \mathrm{Tj}=25^{\circ} \mathrm{C}, \\ \mathrm{VM}=12 \mathrm{~V}, \text { lout }=1 \mathrm{~A} \end{gathered}$	-	0.48	0.6	Ω

Note: When the logic signal is applied to the device whilst the VM power supply is not asserted; the device is designed not to function, but for safe usage, please apply the logic signal after the VM power supply is asserted and the VM voltage reaches the proper operating range.

Note1: \quad VIN (H) is defined as the VIN voltage that causes the outputs (OUT_A+ pin, OUT_A- pin, OUT_B+ pin, OUT_Bpin) to change when a pin under test is gradually raised from $0 \mathrm{~V} . \mathrm{VIN}(\mathrm{L})$ is defined as the VIN voltage that causes the outputs (OUT_A+ pin, OUT_A- pin, OUT_B+ pin, OUT_B- pin) to change when the pin is then gradually lowered from 5 V . The difference between $\mathrm{VIN}(\mathrm{H})$ and $\mathrm{VIN}(\mathrm{L})$ is defined as the $\mathrm{VIN}(\mathrm{HYS})$.

17. Electrical Specifications 2

($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VM}=2.5$ to 16 V unless otherwise specified)

Characteristics	Symbol	Test condition	Min	Typ.	Max	Unit
Vref input current	Iref	Vref $=1.8 \mathrm{~V}$	-	0	1	$\mu \mathrm{~A}$
Thermal shutdown (TSD) threshold (Note1)	TjTSD	-	145	165	175	${ }^{\circ} \mathrm{C}$
UVLO release voltage (Note 2)	VUVLO	At rising VM	2.1	2.3	-	V
UVLO hysteresis voltage	Vhys_uvlo	-	-	200	-	mV
Over current detection (ISD) threshold (Note3)	ISD	VM $=12 \mathrm{~V}$	2.5	3.2	4.2	A

Note1: Thermal shutdown (TSD)

When the junction temperature of the device reaches the TSD threshold, the TSD circuit is triggered; the internal reset circuit then turns off the output transistors. Once the TSD circuit is triggered, the device will set output pin to $\mathrm{Hi}-\mathrm{Z}$, and can be cleared by reasserting the VM power source, or setting the STBY pins to standby mode. The TSD circuit is a backup function to detect a thermal error, therefore is not recommended to be used aggressively.

Note 2: Under voltage lockout (UVLO)

When the supply voltage to VM pin is 2.1 or less (typ.), the internal circuit is triggered; the internal reset circuit then turns off the output transistors. Once the UVLO is triggered, it can be cleared by reasserting the VM supply voltage to 2.3 V or more (typ.)

Note3: Over current detection (ISD)

When the output current reaches the threshold, the ISD circuit is triggered; the internal reset circuit then turns off the output transistors. It has a dead band time of $1.2 \mu \mathrm{~s}$ (typ.) to avoid ISD false triggering by switching noise. Once the ISD circuit is triggered, the device will set output pins to Hi-Z, and can be cleared by reasserting the VM power source, or setting the STBY pin to standby mode.

Note: Above ISD operation threshold value and band times are reference values, and are not guaranteed.

Back-EMF

While a motor is rotating, there is a timing at which power is fed back to the power supply. At that timing, the motor current recirculates back to the power supply due to the effect of the motor back-EMF.
If the power supply does not have enough sink capability, the power supply and output pins of the device might rise above the rated voltages. The magnitude of the motor back-EMF varies with usage conditions and motor characteristics. It must be fully verified that there is no risk that the TC78H670FTG or other components will be damaged or fail due to the motor back-EMF.

Cautions on Overcurrent Shutdown (ISD) and Thermal Shutdown (TSD)

The ISD and TSD circuits are only intended to provide temporary protection against irregular conditions such as an output short-circuit; they do not necessarily guarantee the complete IC safety.
If the device is used beyond the specified operating ranges, these circuits may not operate properly: then the device may be damaged due to an output short-circuit.
The ISD circuit is only intended to provide a temporary protection against an output short-circuit. If such a condition persists for a long time, the device may be damaged due to overstress. Overcurrent conditions must be removed immediately by external hardware.

IC Mounting

Do not insert devices incorrectly or in the wrong orientation. Otherwise, it may cause breakdown, damage and/or deterioration of the device.

18. AC Electrical Specification 1

($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VM}=12 \mathrm{~V}, 6.8 \mathrm{mH} / 5.7 \Omega$ unless otherwise specified)

Characteristics	Symbol	Test condition	Min	Typ.	Max	Unit
CLK input frequency	fCLK	-	-	-	400	kHz
Inside filter of CLK input minimum High width	tCLK(H)	The CLK(H) minimum pulse width	500	-	-	ns
Inside filter of CLK input minimum Low width	tCLK(L)	The CLK(L) minimum pulse width	500	-	-	ns
Output transistor switching specific	tr	-	10	20	30	ns
	tf	-	10	20	30	ns
	tpLH(CLK)	-	-	840	-	ns
	tpHL(CLK)	-	-	900	-	ns
Analog noise blanking time	AtBLK	$\mathrm{VM}=12 \mathrm{~V}$	340	540	740	ns
Oscillator frequency accuracy	$\Delta \mathrm{fOSCM}$	$\begin{gathered} \mathrm{ROSC}=47 \mathrm{k} \Omega \\ \mathrm{VM}=2.5 \mathrm{~V} \text { to } 16 \mathrm{~V} \end{gathered}$	-15	-	+15	\%
Oscillator reference frequency	foscm	ROSC $=47 \mathrm{k} \Omega$	1076	1266	1456	kHz
Chopping frequency	fchop	Output: Active, fOSCM = 1266 kHz	-	79	-	kHz

AC Electrical Specification Timing chart

Note: Timing charts may be simplified for explanatory purpose.

19. AC Electrical Specification 2

($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VM}=2.5$ to 16 V unless otherwise specified)

Characteristics	Symbol	Test condition	Min	Typ.	Max	Unit	No.in Timing Chart
Serial CLK frequency	fSCLK	$\mathrm{VIN}=3.3 \mathrm{~V}$	1.0	-	25	MHz	-
CLK cycle	tsCKW	$\begin{gathered} \mathrm{VIH}=3.3 \mathrm{~V}, \mathrm{VIL}=0 \mathrm{~V}, \\ \operatorname{tr}=\mathrm{tf}=23 \mathrm{~ns} \end{gathered}$	46	-	-	ns	-
Minimum CLK pulse width	tw(CLK)	$\mathrm{VIN}=3.3 \mathrm{~V}$	40	-	-	ns	1
	twp(CLK)		20	-	-	ns	2
	twn(CLK)		20	-	-	ns	3
Minimum LATCH pulse width	tLATCH (H)	$\mathrm{VIN}=3.3 \mathrm{~V}$	20	-	-	ns	4
Data setup time	tsuSIN - CLK	$\mathrm{VIN}=3.3 \mathrm{~V}$	10	-	-	ns	5
	tsuLT - CLK		10	-	-	ns	6
Data hold time	thSIN - CLK	$\mathrm{VIN}=3.3 \mathrm{~V}$	10	-	-	ns	7
	thLT - CLK		40	-	-	ns	8
LATCH cycle	tcLT	$\mathrm{VIN}=3.3 \mathrm{~V}$	1.32	-	-	$\mu \mathrm{s}$	9

20. (Reference data) P_{D}-Ta Characteristics

When mounted on the board (JEDEC 4 layers)

Note: Characteristics shown above are reference values and not guaranteed.

21. Application Circuit Example

The application circuit shown in this document is provided for reference purposes only. The data for mass production are not guaranteed.

Component values (for reference only)

Part's symbol	Component	Value
CVM1	Electrolytic capacitor	$47 \mu \mathrm{~F}$
CVM2	Ceramic capacitor	$0.1 \mu \mathrm{~F}$
CVREF	Ceramic capacitor	$0.1 \mu \mathrm{~F}$
CEN	Ceramic capacitor	22 nF
ROSC	Resistor	$47 \mathrm{k} \Omega$
REN	Resistor	$10 \mathrm{k} \Omega$

Note: Componet values in above table are for reference only. Some components other than reference value can be adopted depending on the usage conditions.

22. Package Dimensions

P-VQFN16-0303-0.50-001

Weight: 22.9 mg (typ.)

Notes on Contents

1. Block Diagrams

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purposes.

2. Equivalent Circuits

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

3. Timing Charts

Timing charts may be simplified for explanatory purposes.

4. Application Circuits

The application circuits shown in this document are provided for reference purposes only. Thorough evaluation is required, especially at the mass production design stage.
Providing these application circuit examples does not grant a license for industrial property rights.

IC Usage Considerations

Notes on handling of ICs

(1) The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings.

Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion.
(2) Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.
(3) If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause injury, smoke or ignition. Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
(4) Do not insert devices in the wrong orientation or incorrectly.

Make sure that the positive and negative terminals of power supplies are connected properly. Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion. In addition, do not use any device that is applied the current with inserting in the wrong orientation or incorrectly even just one time.
(5) Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator. If there is a large amount of leakage current such as from input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure may cause smoke or ignition. (The overcurrent may cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection-type IC that inputs output DC voltage to a speaker directly.

Points to remember on handling of ICs

(1) Over current Protection Circuit

Over current protection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all circumstances. If the Over current protection circuits operate against the over current, clear the over current status immediately.

Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the over current protection circuit to not operate properly or IC breakdown before operation. In addition, depending on the method of use and usage conditions, if over current continues to flow for a long time after operation, the IC may generate heat resulting in breakdown.
(2) Thermal Shutdown Circuit

Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal shutdown circuits operate against the over temperature, clear the heat generation status immediately. Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.
(3) Heat Radiation Design

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.
(4) Back-EMF

When a motor reverses the rotation direction, stops or slows down abruptly, a current flow back to the motor's power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the device's motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. To avoid this problem, take the effect of back-EMF into consideration in system design.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA".
Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY ANDIOR RELIABILITY, ANDIOR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE ANDIOR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES \& STORAGE CORPORATION
https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by Toshiba manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E SLA7026M MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801 LB11851FA-BH NCV70627DQ001R2G

LB1938FAGEVB

