

CMOS Digital Integrated Circuits Silicon Monolithic

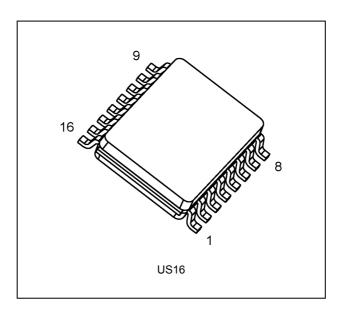
TC7MBL3253CFK

1. Functional Description

· Dual 1-of-4 FET Multiplexer/Demultiplexer

2. General

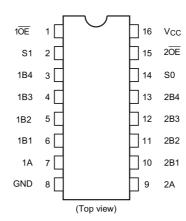
The TC7MBL3253CFK is a low-voltage/low-capacitance CMOS dual 1-of-4 Multiplexer/Demultiplexer. The low on-resistance of the switch allows connections to be made with minimal propagation delay time.

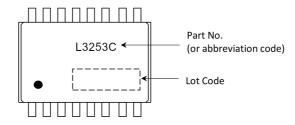

This device consists of two individual four-inputs multiplexer/demultiplexer with common select input (S1, S0) and output enable (\overline{OE}) . The A input is connected to the B1 to B4 outputs as determined by the combination of both the select input (S1, S0) and output enable (\overline{OE}) . When the output enable (\overline{OE}) input is held at "H" level, the switches are open regardless of the state of the select inputs, and a high-impedance state exists between the switches.

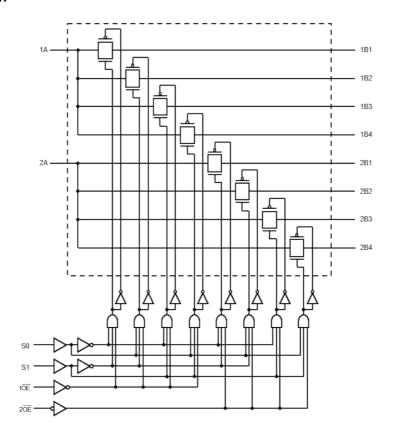
All inputs are equipped with protection circuits against static discharge.

3. Features

- (1) Operating voltage: $V_{CC} = 1.65$ to 3.6 V
- (2) ON capacitance: $C_{I/O} = 13 \text{ pF Switch On (typ.)} @V_{CC} = 3.0 \text{ V}$
- (3) ON resistance: $R_{ON} = 9 \Omega$ (typ.) @ $V_{CC} = 3.0 \text{ V}$, $V_{IS} = 0 \text{ V}$
- (4) Power-down protection for inputs (OE, S1, S0 and I/O)
- (5) Package: VSSOP16 (US16)


4. Packaging


Start of commercial production


5. Pin Assignment

6. Marking

7. System Diagram

8. Truth Table

Inputs OE	Inputs S1	Inputs S0	Function
L	L	L	A port = B1 port
L	L	Н	A port = B2 port
L	Н	L	A port = B3 port
L	Н	Н	A port = B4 port
Н	Х	Х	Disconnect

X: Don't care

9. Absolute Maximum Ratings (Note)

Characteristics	Symbol	Note	Test Condition	Rating	Unit
Supply voltage	V _{CC}			-0.5 to 4.6	V
Input voltage (OE, S1, S0)	V _{IN}			-0.5 to 4.6	V
Switch I/O voltage	Vs		V _{CC} = 0 V or Switch = Off	-0.5 to 4.6	V
			Switch = On	-0.5 to V _{CC} +0.5	
Clamp diode current	I _{IK}			-50	mA
Switch I/O current	I _S			50	mA
Power dissipation	P _D			180	mW
V _{CC} /ground current	I _{CC} /I _{GND}			±100	mA
Storage temperature	T _{stg}			-65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

10. Operating Ranges (Note)

Characteristics	Symbol	Note	Test Condition	Rating	Unit
Supply voltage	V _{CC}			1.65 to 3.6	V
Input voltage (OE, S1, S0)	V _{IN}			0 to 3.6	٧
Switch I/O voltage	Vs		V _{CC} = 0 V or Switch = Off	0 to 3.6	V
			Switch = On	0 to V _{CC}	
Operating temperature	T _{opr}			-40 to 85	°C
Input rise time	dt/dv			0 to 10	ns/V

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused control inputs must be tied to either V_{CC} or GND.

11. Electrical Characteristics

11.1. DC Characteristics (Unless otherwise specified, T_a = -40 to 85 °C)

Characteristics	Symbol	Note	Test Condition	V _{CC} (V)	Min	Тур.	Max	Unit
High-level input voltage (OE, S1, S0)	V _{IH}		_	1.65 to 3.6	0.7 × V _{CC}	_	_	V
Low-level input voltage (OE, S1, S0)	V _{IL}		_	1.65 to 3.6	_	_	$0.3 \times V_{CC}$	٧
Input leakage current (OE, S1, S0)	I _{IN}		V _{IN} = 0 to 3.6 V	1.65 to 3.6	_	_	±1.0	μА
Power-OFF leakage current	I _{OFF}		OE, S, A, B = 0 to 3.6 V	0	_	_	10	μА
Switch OFF-state leakage current	I _{SZ}		$\frac{A, B = 0 \text{ V to V}_{CC},}{OE = V_{CC}}$	1.65 to 3.6	_	_	±1.0	μА
ON-resistance	R _{ON}	(Note 1), (Note 2)	$V_{IS} = 0 \text{ V},$ $I_{IS} = 30 \text{ mA}$	3.0	_	9	13	Ω
			$V_{IS} = 3.0 \text{ V},$ $I_{IS} = 30 \text{ mA}$	3.0	_	18	24	
			V _{IS} = 2.4 V, I _{IS} = 15 mA	3.0	_	20	28	
			V _{IS} = 0 V, I _{IS} = 24 mA	2.3	_	10	15	
			V _{IS} = 2.3 V, I _{IS} = 24 mA	2.3	_	23	32	
			V _{IS} = 2.0 V, I _{IS} = 15 mA	2.3	_	25	35	
			V _{IS} = 0 V, I _{IS} = 4 mA	1.65	_	12	18	
			V _{IS} = 1.65 V, I _{IS} = 4 mA	1.65	_	29	40	
Quiescent supply current	I _{CC}		$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$ A	3.6	_	_	10	μА

Note 1: All typical values are at T_a = 25 °C.

Note 2: Measured by the voltage drop between A and B pins at the indicated current through the switch. On-resistance is determined by the lower of the voltages on the two (A or B) pins.

11.2. AC Characteristics (Unless otherwise specified, T_a = -40 to 85 °C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Output enable time	t_{PZL}, t_{PZH}	ZL,t _{PZH} See Fig. 11.4., 11.5.1,	3.3 ± 0.3	_	6	ns
(OE to bus)		Table 11.4.1	2.5 ± 0.2	_	7	
			1.8 ± 0.15	_	11	
Output enable time	t_{PZL}, t_{PZH}	See Fig. 11.4., 11.5.1,	3.3 ± 0.3		6	ns
(S1, S0 to bus)		Table 11.4.1	2.5 ± 0.2	_	7	
			1.8 ± 0.15	_	11	
Output disable time	t_{PLZ}, t_{PHZ}	PHZ See Fig. 11.4., 11.5.1, Table 11.4.1	3.3 ± 0.3		6	ns
(OE to bus)			2.5 ± 0.2	_	7	
			1.8 ± 0.15	_	11	
Output disable time	t_{PLZ}, t_{PHZ}	See Fig. 11.4., 11.5.1,	3.3 ± 0.3	_	6	ns
(S1, S0 to bus)		Table 11.4.1	2.5 ± 0.2	_	7	
			1.8 ± 0.15	_	11	

11.3. Capacitive Characteristics (Note) (Unless otherwise specified, Ta = 25 °C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance (OE, S1, S0)	C _{IN}	V _{IN} = 0 V	3.0	5	pF
Switch terminal OFF-capacitance (Bn)	C _{I/O}	$\overline{OE} = V_{CC}, V_{IS} = 0 V$	3.0	4	pF
Switch terminal OFF-capacitance (A)	C _{I/O}	$\overline{OE} = V_{CC}, V_{IS} = 0 V$	3.0	9	pF
Switch terminal ON-capacitance (Bn)	C _{I/O}	\overline{OE} = GND, V_{IS} = 0 V	3.0	13	pF
Switch terminal ON-capacitance (A)	C _{I/O}	OE = GND, V _{IS} = 0 V	3.0	13	pF

Note: Parameter guaranteed by design.

11.4. AC Test Circuits

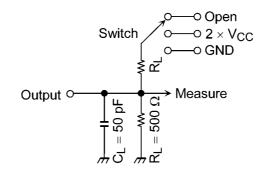


Table 11.4.1 Parameter for AC Test Circuit

Parameter	Switch
t_{PLZ} , t_{PZL}	$2\times V_{CC}$
t _{PHZ} , t _{PZH}	GND

11.5. AC Waveform

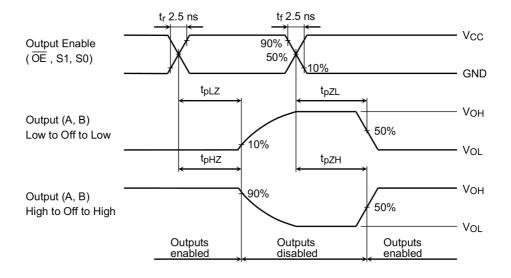


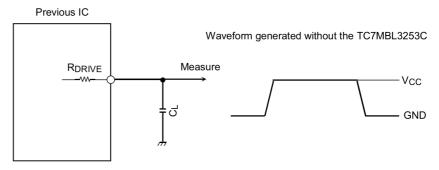
Fig. 11.5.1 AC Waveform t_{PLZ}, t_{PHZ}, t_{PZL}, t_{PZH}

12. Rise and Fall Time (t_r/t_f)

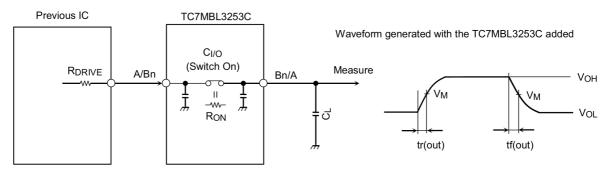
The $t_{r(out)}$ and $t_{f(out)}$ values of the output signals are affected by the CR time constant of the input, which consists of the switch terminal capacitance ($C_{I/O}$) and the on-resistance (R_{ON}) of the input.

In practice, the $t_{r(out)}$ and $t_{f(out)}$ values are also affected by the circuit's capacitance and resistance components other than those of the TC7MBL3253CFK.

The $t_{r(out)}/t_{f(out)}$ values can be approximated as follows. (Fig. 12.1, Table 12.1 shows the calculation circuit.)


 $t_{r(out)}/t_{f(out)} \ (approx) = - (C_{L/O} + C_L) \ \cdot \ (R_{DRIVE} + R_{ON}) \ \cdot \ ln \ (((V_{OH} - V_{OL}) - V_M) \ / \ (V_{OH} - V_{OL}))$ Where, R_{DRIVE} is the output impedance of the previous-stage circuit.

Calculation example:


$$t_{r(out)}$$
 (approx) = - (13 + 15) E - 12 · (120 + 9) · ln (((3.0 - 0) - 1.5) / (3.0 - 0)) ≈ 2.5 ns

Calculation conditions:

 V_{CC} = 3.0 V, C_L = 15 pF, R_{DRIVE} = 120 Ω (output impedance of the previous IC), V_M = 1.5 V (V_{CC} /2) Output of the previous IC = digital (i.e., high-level voltage = V_{CC} , low-level voltage = GND)

RDRIVE = output impedance of the previous IC

RDRIVE = output impedance of the previous IC

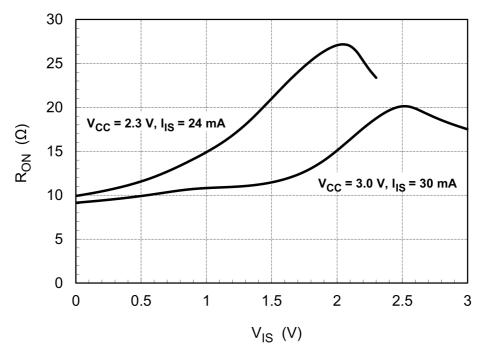
Fig. 12.1 Calculation Circuit

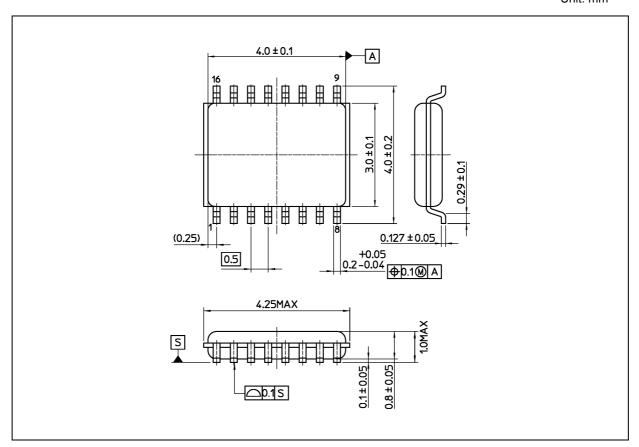
Table 12.1 Calculation Circuit

Characteristics	V_{CC} = 3.3 \pm 0.3 V	V_{CC} = 2.5 ± 0.2 V	V _{CC} = 1.8 ± 0.15 V
V_{M}	V _{CC} /2	V _{CC} /2	V _{CC} /2

©2020-2021 6 2021-07-21

13. Characteristics Curves (Note)




Fig. 13.1 $R_{ON} - V_{IS}$ (tpy.) ($T_a = 25$ °C)

Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

Package Dimensions

Unit: mm

Weight: 0.02 g (typ.)

	Package Name(s)
Nickname: US16	

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- · TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's
 written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications.
 TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE").
 - Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant.
 - IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT.

For details, please contact your TOSHIBA sales representative or contact us via our website.

- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,
 INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS,
 INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS
 OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE,
 USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR
 A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1
PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE
PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH400ZBEX PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F

74CB3Q3125DBQRE4 TC7WBL3305CFK,LF SN74CBT16245CDGGR 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE
PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3C3306LE PI5C3245LE PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX
PI5C3245LEX PI5C3306LEX PI3B3126LE PI3B3125LEX 74CBTLV3384PGG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG
QS32X384Q1G