CMOS Digital Integrated Circuits Silicon Monolithic

TC7PCI3412MT,TC7PCI3415MT

1. Functional Description

- 4 Differential Channel, 2:1 multiplexer/demultiplexer switch for PCI Express Gen3

2. General

The TC7PCI3412MT and TC7PCI3415MT are 4 differential channel, 1-2 multiplexer/demultiplexer for PCI Express Gen3 (8Gbps), or other high-speed interface applications.
The $\mathrm{An}+/ \mathrm{An}$ - inputs is connected to the $\mathrm{Bn}+/ \mathrm{Bn}-$ or $\mathrm{Cn}+/ \mathrm{Cn}-$ outputs determined by the combination both the select input (SEL) and output enable ($\overline{\mathrm{OE}}$). When the output enable ($\overline{\mathrm{OE}}$) input is held high-level, the switches are open (high-impedance state) with regardless the state of select inputs and reducing consumption current. All inputs are equipped with protection circuits against static discharge.

3. Features

(1) Operating voltage: $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
(2) Switch terminal ON-capacitance: $\mathrm{C}_{\mathrm{I} / \mathrm{O}}=1.5 \mathrm{pF}$ Switch On (typ.) $@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
(3) ON resistance: $\mathrm{R}_{\mathrm{ON}}=7.5 \Omega$ (typ.) $@ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V}$
(4) -3dB Bandwidth: BW $=10 \mathrm{GHz}$ (typ.) @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
(5) Insertion Loss: DDIL $=-1 \mathrm{~dB}$ (typ.) @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=4 \mathrm{GHz}$
(6) Off Isolation: DDOIRR $=-20 \mathrm{~dB}$ (typ.) @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=4 \mathrm{GHz}$
(7) Crosstalk: DDNEXT $=-40 \mathrm{~dB}$ (typ.) @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=4 \mathrm{GHz}$
(8) ESD performance: Machine model $\geq \pm 200 \mathrm{~V}$, Human body model $\geq \pm 2000 \mathrm{~V}$
(9) Package: TQFN42

4. Packaging

5. Marking

TC7PCI3412MT

6. Pin Assignment

TC7PCI3412MT

TC7PCI3415MT

7. Block Diagram

8. Principle of Operation

8.1. Truth Table

Inputs OE1	Inputs OE2	Inputs SEL	Function			
L	-	L	An+ port = Bn+ port, An- port = Bn- port	$(\mathrm{n}=0,1)$		
L	-	H	An+ port = Cn+ port, An- port = Cn- port	$(\mathrm{n}=0,1)$		
H	-	-	An, Bn, Cn port Disconnect	$(\mathrm{n}=0,1)$		
-	L	L	An+ port = Bn+ port, An- port = Bn- port	$(\mathrm{n}=2,3)$		
-	L	H	An+ port = Cn+ port, An- port = Cn- port	$(\mathrm{n}=2,3)$		
-	H	-	An, Bn, Cn port Disconnect	$(\mathrm{n}=2,3)$		

-: Don't care.

9. Absolute Maximum Ratings (Note)

Characteristics	Symbol	Note	Rating	Unit
Supply voltage	V_{CC}		-0.5 to 4.6	V
Input voltage $(\overline{\mathrm{OE}} 1, \overline{\mathrm{OE}} 2, \mathrm{SEL})$	V_{IN}		-0.5 to 4.6	V
Switch I/O voltage	V_{S}		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Switch I/O current	I_{S}		50	mA
Power dissipation	P_{D}		500	mW
$\mathrm{~V}_{\mathrm{CC}}$ /ground current	$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$		mA	
Storage temperature	$\mathrm{T}_{\mathrm{Stg}}$		± 50	${ }^{\circ} \mathrm{C}$

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).
10. Operating Ranges (Note)

Characteristics	Symbol	Note	Rating	Unit
Supply voltage	V_{CC}		3.0 to 3.6	V
Input voltage $(\overline{\mathrm{OE}} 1, \overline{\mathrm{OE}} 2, \mathrm{SEL})$	V_{IN}		0 to 3.6	V
Switch I/O voltage	V_{S}		0 to V_{CC}	V
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$		-40 to 85	${ }^{\circ} \mathrm{C}$
Input rise time	$\mathrm{dt} / \mathrm{dv}$		0 to 10	$\mathrm{~ns} / \mathrm{V}$
Input fall time	$\mathrm{dt} / \mathrm{dv}$		0 to 10	$\mathrm{~ns} / \mathrm{V}$

Note: The operating ranges must be maintained to ensure the normal operation of the device.
Unused control inputs must be tied to either V_{CC} or GND.

11. Electrical Characteristics

11.1. DC Characteristics (Note) (Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Note	Test Condition	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Min	Typ.	Max	Unit
High-level input voltage ($\overline{\mathrm{OE}} 1, \overline{\mathrm{OE}} 2, \mathrm{SEL})$	V_{IH}		-	3.0 to 3.6	$\begin{gathered} 0.65 \times \\ V_{C C} \end{gathered}$	-	-	V
Low-level input voltage ($\overline{\mathrm{OE}} 1, \overline{\mathrm{OE}} 2, \mathrm{SEL}$)	$\mathrm{V}_{\text {IL }}$		-	3.0 to 3.6	-	-	$\begin{gathered} 0.35 \times \\ V_{C C} \\ \hline \end{gathered}$	V
Input leakage current ($\overline{\mathrm{OE}} 1, \overline{\mathrm{OE}} 2, \mathrm{SEL}$)	$\mathrm{I}_{\text {IN }}$		$\mathrm{V}_{\mathrm{IN}}=0$ to 3.6 V	3.0 to 3.6	-	-	± 1	$\mu \mathrm{A}$
Switch OFF-state leakage current	$\mathrm{I}_{\text {SZ }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=0 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{OE} 1=\overline{\mathrm{OE} 2}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0 to 3.6	-	-	± 1	$\mu \mathrm{A}$
ON-resistance	R_{ON}	(Note 1)	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}, \mathrm{I}_{\text {IS }}=30 \mathrm{~mA}$	3.0	-	7.5	11.5	Ω
	R_{ON}	(Note 1)	$\mathrm{V}_{\mathrm{IS}}=1.2 \mathrm{~V}, \mathrm{I}_{\text {IS }}=30 \mathrm{~mA}$	3.0	-	8.5	13.5	Ω
Difference of ON-resistance between switches (bit to bit)	$\Delta \mathrm{R}_{\mathrm{ON}}$	(Note 1)	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{I}_{\text {IS }}=15 \mathrm{~mA}$	3.0	-	0.1	-	Ω
ON-resistance flatness	$\mathrm{R}_{\mathrm{ON} \text { (flat) }}$	(Note 1)	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$ to $1.2 \mathrm{~V}, \mathrm{I}_{\text {IS }}=15 \mathrm{~mA}$	3.0	-	1	-	Ω
Quiescent supply current	I_{CC}		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{OE} 1=\frac{\mathrm{OE} 2}{}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.6	-	-	1	$\mu \mathrm{A}$
Quiescent supply current	I_{CC}		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{OE} 1=\overline{\mathrm{OE} 2} 2=\mathrm{GND} \end{aligned}$	3.6	-	400	800	$\mu \mathrm{A}$

Note : All typical values are at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
Note 1: ON-resistance is measured by measuring the voltage drop across the switch at the indicated current.
11.2. AC Characteristics (Note) (Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$)

Characteristics	Symbol	Note	Test Condition	$\mathrm{V}_{\text {cc }}(\mathrm{V})$	Min	Typ.	Max	Unit
Propagation delay time	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} / \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	(Note 1)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { See Fig. } 12.1 \end{aligned}$	3.3 ± 0.3	-	0.1	-	ns
Turn-ON time (SEL to Output)	$\mathrm{t}_{\text {on }}$		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { See Fig. } 12.2 \end{aligned}$	3.3 ± 0.3	-	10	15	ns
Turn-ON time ($\overline{\mathrm{OE}}$ to Output)	$\mathrm{t}_{\text {on }}$		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { See Fig. } 12.2 \end{aligned}$	3.3 ± 0.3	-	37	50	$\mu \mathrm{S}$
Turn-OFF time (SEL to Output)	$\mathrm{t}_{\text {off }}$		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { See Fig. } 12.2 \end{aligned}$	3.3 ± 0.3	-	3.5	5	ns
Turn-OFF time ($\overline{\mathrm{OE}}$ to Output)	$\mathrm{t}_{\text {off }}$		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { See Fig. } 12.2 \end{aligned}$	3.3 ± 0.3	-	5	6.5	ns
Break before make	TBBM		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { See Fig. } 12.3 \end{aligned}$	3.3 ± 0.3	3	-	9	ns
Output skew (bit to bit)	$\mathrm{t}_{\text {SK(b) }}$	(Note 1)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \text { See Fig. } 12.4 \\ & \hline \end{aligned}$	3.3 ± 0.3	-	5	-	ps
Output skew (channel to channel)	$\mathrm{t}_{\text {SK(CH) }}$	(Note 1)	$C_{L}=5 \mathrm{pF}$ See Fig. 12.5	3.3 ± 0.3	-	10	-	ps
Differential OFF isolation	DDOIRR	(Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=4 \mathrm{GHz} \\ & \text { See Fig. } 12.6 \\ & \hline \end{aligned}$	3.3 ± 0.3	-	-20	-	dB
Differential Near-end crosstalk	DDNEXT	(Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=4 \mathrm{GHz} \\ & \text { See Fig. } 12.7 \end{aligned}$	3.3 ± 0.3	-	-40	-	dB
Differential return loss	DDRL	(Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=4 \mathrm{GHz} \\ & \text { See Fig. } 12.8 \end{aligned}$	3.3 ± 0.3	-	-20	-	dB
Differential insertion loss	DDIL	(Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}=4 \mathrm{GHz} \\ & \text { See Fig. } 12.8 \end{aligned}$	3.3 ± 0.3	-	-1	-	dB
-3dB Bandwidth	BW	(Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \\ & \text { See Fig. } 12.8 \end{aligned}$	3.3 ± 0.3	-	10	-	GHz

Note : All typical values are at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
Note 1: This parameter is guaranteed by design.

11.3. Capacitive Characteristics (Note) (Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Note	Test Condition	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	Typ.	Unit
Input capacitance (OE1, $\overline{\mathrm{OE}} 2, \mathrm{SEL})$	C_{IN}		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	3.3	3	pF
Switch terminal OFF-capacitance $(A n+, A n-)$	$\mathrm{C}_{1 / \mathrm{O}}$		$\overline{\mathrm{OE}} 1=\overline{\mathrm{OE}} 2=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IS }}=0 \mathrm{~V}$	3.3	0.8	pF
Switch terminal OFF-capacitance (Bn+, Bn-, Cn+, Cn-)			$\overline{\mathrm{OE}} 1=\overline{\mathrm{OE}} 2=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IS}}=0 \mathrm{~V}$	3.3	0.5	pF
Switch terminal ON-capacitance	$\mathrm{C}_{1 / 0}$		$\overline{\mathrm{OE}} 1=\overline{\mathrm{OE}} 2=\mathrm{GND}, \mathrm{V}_{\text {IS }}=0 \mathrm{~V}$	3.3	1.5	pF

Note: Parameter guaranteed by design.

12. AC Electrical Test Circuit (Fig)

Fig. 12.1 Propagation delay time

Input
($\overline{\mathrm{OE}} \mathrm{n}$ or SEL)

Output
$(\mathrm{Bn}+, \mathrm{Bn}-, \mathrm{Cn}+, \mathrm{Cn}-)$

Fig. 12.2 Turn-ON and Turn-OFF time

Fig. 12.3 Break before make

Fig. 12.4 Output skew (bit to bit)

Fig. 12.5 Output skew (channel to channel)

Fig. 12.6 Differential OFF isolation

$R_{L}=50 \Omega$
All unused ports are connected to GND through 50Ω pull-down resistors.
Fig. 12.7 Differential Near-end crosstalk

Fig. 12.8 Differential return loss, Differential insertion loss, -3dB Bandwidth

Package Dimensions

Weight: 0.06 g (typ.)

Package Name(s)
TOSHIBA: P-UQFN42-0409-0.50-001
Nickname: TQFN42

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Toshiba manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT. 653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D.112 74HCT4052DB. 112 74HCT4053DB. 112 74HCT4067D. 112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 59628771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ

