TC7WP3125FK

1. Functional Description

- Low-Voltage, Low-Power 2-Bit Dual-Supply Bus Buffer

2. General

The TC7WP3125FK is a dual supply, advanced high-speed CMOS 2-bit dual supply voltage interface bus buffer fabricated with silicon gate CMOS technology.
It is also designed with over voltage tolerant inputs and outputs up to 3.6 V . Designed for use as an interface
 $\mathrm{V}, 2.5-\mathrm{V}$ or $3.6-\mathrm{V}$ supply systems.
The A-input interfaces with the $1.2-\mathrm{V}, 1.5-\mathrm{V}, 1.8-\mathrm{V}$ or $2.5-\mathrm{V}$ bus, the $\mathrm{B}-$ output with the $1.8-\mathrm{V}, 2.5-\mathrm{V}, 3.3-\mathrm{V}$ bus. The enable input $\overline{\mathrm{OE}}$ can be used to disable the device so that the signal lines are effectively isolated.
All inputs are equipped with protection circuits against static discharge or transient excess voltage.

3. Features (Note)

(1) Wide operating temperature range: $\mathrm{T}_{\mathrm{opr}}=-40$ to $125^{\circ} \mathrm{C}$ (Note 1)
(2) Operating voltage: 1.2 V to $1.8 \mathrm{~V} / 1.2 \mathrm{~V}$ to $2.5 \mathrm{~V} / 1.2 \mathrm{~V}$ to $3.3 \mathrm{~V} / 1.5 \mathrm{~V}$ to 2.5 V

$$
\text { 1.5 V to } 3.3 \mathrm{~V} / 1.8 \mathrm{~V} \text { to } 2.5 \mathrm{~V} / 1.8 \mathrm{~V} \text { to } 3.3 \mathrm{~V} / 2.5 \mathrm{~V} \text { to } 3.3 \mathrm{~V}
$$

(3) High-speed operation: $\mathrm{t}_{\mathrm{pd}}=6.8 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=2.5 \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}\right)$

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{pd}}=7.8 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=1.8 \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}\right) \\
& \mathrm{t}_{\mathrm{pd}}=8.6 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=1.5 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}\right) \\
& \mathrm{t}_{\mathrm{pd}}=22 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}\right) \\
& \mathrm{t}_{\mathrm{pd}}=9.5 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=1.8 \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}\right) \\
& \mathrm{t}_{\mathrm{pd}}=10.5 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=1.5 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}\right) \\
& \mathrm{t}_{\mathrm{pd}}=23 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}\right) \\
& \mathrm{t}_{\mathrm{pd}}=30 \mathrm{~ns}(\max)\left(\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=1.8 \pm 0.15 \mathrm{~V}\right)
\end{aligned}
$$

(4) Output current: $\left|\mathrm{I}_{\mathrm{OHB}}\right| / \mathrm{I}_{\mathrm{OLB}}=12 \mathrm{~mA}(\mathrm{~min})\left(\mathrm{V}_{\mathrm{CCB}}=3.0 \mathrm{~V}\right)$
$\left|\mathrm{I}_{\mathrm{OHB}}\right| / \mathrm{I}_{\mathrm{OLB}}=9 \mathrm{~mA}(\mathrm{~min})\left(\mathrm{V}_{\mathrm{CCB}}=2.3 \mathrm{~V}\right)$
$\left|\mathrm{I}_{\mathrm{OHB}}\right| / \mathrm{I}_{\mathrm{OLB}}=3 \mathrm{~mA}(\mathrm{~min})\left(\mathrm{V}_{\mathrm{CCB}}=1.65 \mathrm{~V}\right)$
(5) Ultra-small package: US8
(6) Low power dissipation: By using the new circuit, the power consumption is reduced significantly when $\overline{\mathrm{OE}}=$ " H ".
Suitable for battery-driven applications such as PDAs and cellular phones.
(7) Floating of A-bus is permitted (when $\overline{\mathrm{OE}}=$ " H ").
(8) 3.6 V tolerance and power-down protection are provided to all inputs and outputs.

Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.
Note 1: For devices with the ordering part number ending in (CT. $\mathrm{T}_{\mathrm{opr}}=-40$ to $85^{\circ} \mathrm{C}$ for the other devices.
4. Packaging

5. Pin Assignment

6. Truth Table

Input $\overline{\mathrm{OE}}$	Input $\mathrm{A} 1, \mathrm{~A} 2$	Outputs $\mathrm{B} 1, \mathrm{~B} 2$
L	L	L
L	H	H
H	X	Z

X: Don't care
Z: High impedance

7. IEC Logic Symbol

8. Block Diagram

9. Absolute Maximum Ratings (Note) (Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Note	Rating	Unit
Supply voltage	$\mathrm{V}_{\text {CCA }}$	(Note 1)	-0.5 to 4.6	V
	$\mathrm{V}_{\text {CCB }}$		-0.5 to 4.6	
Input voltage (An, $\overline{\mathrm{OE}}$)	$\mathrm{V}_{\text {IN }}$		-0.5 to 4.6	V
Output voltage (Bn)	$\mathrm{V}_{\text {OUTB }}$	(Note 2)	-0.5 to 4.6	V
		(Note 3)	-0.5 to $V_{C C B}+0.5$	
Input diode current	I_{IK}		-50	mA
Output diode current	$\mathrm{I}_{\text {OK }}$	(Note 4)	± 50	mA
Output current	loutb		± 25	mA
$\mathrm{V}_{\mathrm{CC}} /$ ground current per supply pin	$\mathrm{I}_{\text {CCA }}$		± 25	mA
	$\mathrm{I}_{\text {CCB }}$		± 50	
Power dissipation	P_{D}		200	mW
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to 150	${ }^{\circ} \mathrm{C}$

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).
Note 1: Don't supply a voltage to $\mathrm{V}_{\mathrm{CCB}}$ pin when $\mathrm{V}_{\mathrm{CCA}}$ is in the OFF state.
Note 2: Output in OFF state.
Note 3: High (H) or Low (L) state. lout absolute maximum rating must be observed.
Note 4: $\mathrm{V}_{\text {OUT }}$ < GND, $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}$
10. Operating Ranges (Note)

Characteristics	Symbol	Note	Test Condition	Rating	Unit
Supply voltage	$\mathrm{V}_{\text {CCA }}$	(Note 1)	-	1.1 to 2.7	V
	$\mathrm{V}_{\text {CCB }}$			1.65 to 3.6	
Input voltage (An, $\overline{\mathrm{OE}}$)	$\mathrm{V}_{\text {IN }}$		-	0 to 3.6	V
Output voltage (Bn)	$\mathrm{V}_{\text {OUTB }}$	(Note 2)	-	0 to 3.6	V
		(Note 3)		0 to $\mathrm{V}_{\mathrm{CCB}}$	
Output current (Bn)	loutb		$\mathrm{V}_{\mathrm{CCB}}=3.0$ to 3.6 V	± 12	mA
			$\mathrm{V}_{\text {CCB }}=2.3$ to 2.7 V	± 9	
			$\mathrm{V}_{\mathrm{CCB}}=1.65$ to 1.95 V	± 3	
Operating temperature	$\mathrm{T}_{\text {opr }}$	(Note 4)	-	-40 to 125	${ }^{\circ} \mathrm{C}$
		(Note 5)		-40 to 85	
Input rise and fall times	dt/dv		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCA}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CCB}}=3.0 \mathrm{~V} \end{aligned}$	0 to 10	ns / V

Note: The operating ranges must be maintained to ensure the normal operation of the device.
Unused inputs must be tied to either $V_{C C}$ or GND.
Note 1: Don't use at $\mathrm{V}_{\mathrm{CCA}}>\mathrm{V}_{\mathrm{CCB}}$.
Note 2: Output in OFF state.
Note 3: High (H) or Low (L) state.
Note 4: For devices with the ordering part number ending in (CT.
Note 5: For devices except those with the ordering part number ending in (CT.

11. Electrical Characteristics

11.1. DC Characteristics

11.1.1. $1.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ccA}} \leq 2.7 \mathrm{~V}, 1.65 \mathrm{~V}<\mathrm{V}_{\mathrm{CcB}} \leq 3.6 \mathrm{~V}$

 (Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$)| Characteristics | Symbol | Test Condition | | $\mathrm{V}_{\mathrm{CCA}}(\mathrm{V})$ | $V_{\text {CCB }}(\mathrm{V})$ | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High-level input voltage | $\mathrm{V}_{\text {IHA }}$ | V_{IN} | | $1.1 \leq \mathrm{V}_{\text {CCA }} \leq 1.4$ | 1.65 to 3.6 | $\begin{aligned} & 0.65 \times \\ & V_{\text {CCA }} \end{aligned}$ | - | V |
| | | | | $1.4 \leq \mathrm{V}_{\mathrm{CCA}} \leq 1.65$ | 1.65 to 3.6 | $\begin{aligned} & \hline 0.65 x \\ & V_{\text {CCA }} \end{aligned}$ | - | |
| | | | | $1.65 \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.3$ | 2.3 to 3.6 | $\begin{aligned} & 0.65 \times \\ & V_{\text {CCA }} \end{aligned}$ | - | |
| | | | | $2.3 \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.7$ | 2.7 to 3.6 | 1.6 | - | |
| Low-level input voltage | $\mathrm{V}_{\text {ILA }}$ | $\mathrm{V}_{\text {IN }}$ | | $1.1 \leq \mathrm{V}_{\text {CCA }} \leq 1.4$ | 1.65 to 3.6 | - | $\begin{gathered} 0.3 \times \\ V_{\text {CCA }} \end{gathered}$ | V |
| | | | | $1.4 \leq \mathrm{V}_{\mathrm{CCA}} \leq 1.65$ | 1.65 to 3.6 | - | $\begin{gathered} 0.3 \times \\ \mathrm{V}_{\mathrm{CCA}} \end{gathered}$ | |
| | | | | $1.65 \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.3$ | 2.3 to 3.6 | - | $\begin{aligned} & 0.35 \times \\ & \mathrm{V}_{\mathrm{CCA}} \end{aligned}$ | |
| | | | | $2.3 \leq \mathrm{V}_{\text {CCA }} \leq 2.7$ | 2.7 to 3.6 | - | 0.7 | |
| High-level output voltage | $\mathrm{V}_{\text {OHB }}$ | $A n=V_{1 H}$ | $\mathrm{l}_{\text {OHB }}=-100 \mu \mathrm{~A}$ | 1.1 to 2.7 | 1.65 to 3.6 | $\begin{aligned} & \mathrm{V}_{\mathrm{CCB}} \\ & -0.2 \end{aligned}$ | - | V |
| | | | $\mathrm{l}_{\mathrm{OHB}}=-3 \mathrm{~mA}$ | 1.1 to 1.65 | 1.65 | 1.25 | - | |
| | | | $\mathrm{I}_{\text {OHB }}=-9 \mathrm{~mA}$ | 1.1 to 2.3 | 2.3 | 1.7 | - | |
| | | | $\mathrm{l}_{\text {OHB }}=-12 \mathrm{~mA}$ | 1.1 to 2.7 | 3.0 | 2.2 | - | |
| Low-level output voltage | $\mathrm{V}_{\text {OLB }}$ | $\mathrm{An}=\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{I}_{\text {OLB }}=100 \mu \mathrm{~A}$ | 1.1 to 2.7 | 1.65 to 3.6 | - | 0.2 | V |
| | | | $\mathrm{l}_{\text {OLB }}=3 \mathrm{~mA}$ | 1.1 to 1.65 | 1.65 | - | 0.3 | |
| | | | $\mathrm{l}_{\text {OLB }}=9 \mathrm{~mA}$ | 1.1 to 2.3 | 2.3 | - | 0.6 | |
| | | | $\mathrm{I}_{\text {OLB }}=12 \mathrm{~mA}$ | 1.1 to 2.7 | 3.0 | - | 0.55 | |
| 3-state output OFF-state leakage current | Iozb | $\begin{aligned} & \mathrm{An}=\mathrm{V}_{\text {IHA }} \text { or } \mathrm{V}_{\text {ILA }} \\ & \mathrm{Bn}=0 \text { to } 3.6 \mathrm{~V} \end{aligned}$ | | 1.1 to 2.7 | 1.65 to 3.6 | - | ± 2.0 | $\mu \mathrm{A}$ |
| Input leakage current | I_{IN} | $\mathrm{V}_{\text {IN }}=0$ to 3.6 V | | 1.1 to 2.7 | 1.65 to 3.6 | - | ± 1.0 | $\mu \mathrm{A}$ |
| Power-off leakage current | IoFF1 | $\mathrm{V}_{\mathrm{IN}}, \mathrm{Bn}=0 \text { to } 3.6 \mathrm{~V}$ | | 0 | 0 | - | 2.0 | $\mu \mathrm{A}$ |
| | lofF2 | $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{An}, \mathrm{Bn}=0 \text { to } 3.6 \mathrm{~V} \end{aligned}$ | | 1.1 to 2.7 | 0 | - | 2.0 | |
| | Ioff3 | | | 1.1 to 2.7 | Open | - | 2.0 | |
| Quiescent supply current | $\mathrm{I}_{\text {cca }}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCA }}$ or GND | | 1.1 to 2.7 | 1.65 to 3.6 | - | 2.0 | $\mu \mathrm{A}$ |
| | $\mathrm{I}_{\text {CCB }}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCA}} \text { or } \mathrm{GND}$ | | 1.1 to 2.7 | 1.65 to 3.6 | - | 2.0 | |
| | $\mathrm{I}_{\text {cca }}$ | $\mathrm{V}_{\mathrm{CCA}} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.6 \mathrm{~V}$ | | 1.1 to 2.7 | 1.65 to 3.6 | - | ± 2.0 | |
| | $\mathrm{I}_{\text {CCB }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{~V}_{\mathrm{CCB}} \leq \mathrm{Bn} \leq 3.6 \mathrm{~V} \end{aligned}$ | | 1.1 to 2.7 | 1.65 to 3.6 | - | ± 2.0 | |

11.1.2. $1.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.7 \mathrm{~V}, 1.65 \mathrm{~V}<\mathrm{V}_{\mathrm{CCB}} \leq 3.6 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $125^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition		$\mathrm{V}_{\text {CCA }}(\mathrm{V})$	$\mathrm{V}_{\text {CCB }}(\mathrm{V})$	Min	Max	Unit
High-level input voltage	$\mathrm{V}_{\mathrm{IHA}}$	V IN		$1.1 \leq \mathrm{V}_{\mathrm{CCA}} \leq 1.4$	1.65 to 3.6	$\begin{aligned} & 0.65 \times \\ & V_{\text {CCA }} \end{aligned}$	-	V
				$1.4 \leq \mathrm{V}_{\mathrm{CCA}} \leq 1.65$	1.65 to 3.6	$\begin{aligned} & 0.65 \times \\ & V_{\text {CCA }} \end{aligned}$	-	
				$1.65 \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.3$	2.3 to 3.6	$\begin{aligned} & 0.65 \times \\ & V_{\text {CCA }} \end{aligned}$	-	
				$2.3 \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.7$	2.7 to 3.6	1.6	-	
Low-level input voltage	VILA	$\mathrm{V}_{\text {IN }}$		$1.1 \leq \mathrm{V}_{\text {CCA }} \leq 1.4$	1.65 to 3.6	-	$\begin{aligned} & 0.3 \times \\ & \mathrm{V}_{\mathrm{CCA}} \end{aligned}$	V
				$1.4 \leq \mathrm{V}_{\mathrm{CCA}} \leq 1.65$	1.65 to 3.6	-	$\begin{aligned} & 0.3 \times \\ & \mathrm{V}_{\mathrm{CCA}} \end{aligned}$	
				$1.65 \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.3$	2.3 to 3.6	-	$\begin{aligned} & 0.35 \times \\ & \mathrm{V}_{\text {CCA }} \end{aligned}$	
				$2.3 \leq \mathrm{V}_{\mathrm{CCA}} \leq 2.7$	2.7 to 3.6	-	0.7	
High-level output voltage	$\mathrm{V}_{\text {OHB }}$	$\mathrm{An}=\mathrm{V}_{\mathrm{IH}}$	$\mathrm{I}_{\mathrm{OHB}}=-100 \mu \mathrm{~A}$	1.1 to 2.7	1.65 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{CCB}} \\ & -0.2 \end{aligned}$	-	V
			$\mathrm{l}_{\mathrm{OHB}}=-3 \mathrm{~mA}$	1.1 to 1.65	1.65	1.15	-	
			$\mathrm{l}_{\text {OHB }}=-9 \mathrm{~mA}$	1.1 to 2.3	2.3	1.6	-	
			$\mathrm{I}_{\text {OHB }}=-12 \mathrm{~mA}$	1.1 to 2.7	3.0	2.0	-	
Low-level output voltage	$\mathrm{V}_{\text {OLB }}$	$\mathrm{An}=\mathrm{V}_{\mathrm{IL}}$	$\mathrm{I}_{\text {OLB }}=100 \mu \mathrm{~A}$	1.1 to 2.7	1.65 to 3.6	-	0.2	V
			$\mathrm{l}_{\text {OLB }}=3 \mathrm{~mA}$	1.1 to 1.65	1.65	-	0.45	
			$\mathrm{l}_{\text {OLB }}=9 \mathrm{~mA}$	1.1 to 2.3	2.3	-	0.8	
			$\mathrm{l}_{\text {OLB }}=12 \mathrm{~mA}$	1.1 to 2.7	3.0	-	0.8	
3-state output OFF-state leakage current	Iozb	$\begin{aligned} & \mathrm{An}=\mathrm{V}_{1 \mathrm{HA}} \\ & \mathrm{Bn}=0 \text { to } \end{aligned}$		1.1 to 2.7	1.65 to 3.6	-	± 20.0	$\mu \mathrm{A}$
Input leakage current	1 IN	$\mathrm{V}_{\text {IN }}=0$		1.1 to 2.7	1.65 to 3.6	-	± 10.0	$\mu \mathrm{A}$
Power-off leakage current	IofF1	$\mathrm{V}_{\mathrm{IN}}, \mathrm{Bn}=0$ to 3.6 V		0	0	-	20.0	$\mu \mathrm{A}$
	loff2	$\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{An}, \mathrm{Bn}=0 \text { to } 3.6 \mathrm{~V} \end{aligned}$		1.1 to 2.7	0	-	20.0	
	Ioff3			1.1 to 2.7	Open	-	20.0	
Quiescent supply current	$\mathrm{I}_{\text {CCA }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCA }} \text { or } \mathrm{GND}$		1.1 to 2.7	1.65 to 3.6	-	20.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {CCB }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CCA }}$ or GND		1.1 to 2.7	1.65 to 3.6	-	20.0	
	ICCA	$\mathrm{V}_{\mathrm{CCA}} \leq \mathrm{V}_{\mathrm{IN}} \leq 3.6 \mathrm{~V}$		1.1 to 2.7	1.65 to 3.6	-	± 20.0	
	$I_{\text {CCB }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CCA}} \\ & \mathrm{~V}_{\mathrm{CCB}} \leq \mathrm{Bn} \leq 3.6 \mathrm{~V} \end{aligned}$		1.1 to 2.7	1.65 to 3.6	-	± 20.0	

11.2. AC Characteristics

11.2.1. $\mathrm{V}_{\text {CCA }}=2.5 \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=3.3 \pm 0.3 \mathrm{~V}$

(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PHL}}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	6.8	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	8.7	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	3.9	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	0.5	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} m-\mathrm{t}_{\mathrm{PLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.2. $\mathrm{V}_{\text {CCA }}=2.5 \pm 0.2 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=3.3 \pm 0.3 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\mathrm{PHL}}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	7.7	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	9.9	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	4.3	
Output skew	$\mathrm{t}_{\mathrm{osLH}} / \mathrm{t}_{\mathrm{osHL}}$	(Note 1)		-	1.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} m-\mathrm{t}_{\mathrm{PLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$

11.2.3. $\mathrm{V}_{\mathrm{CCA}}=1.8 \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=3.3 \pm 0.3 \mathrm{~V}$

(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	7.8	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	10.7	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	5.2	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {oshL }}$	(Note 1)		-	0.5	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\text {PLH }} m-\mathrm{t}_{\text {PLH }}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$

11.2.4. $\mathrm{V}_{\text {CCA }}=1.8 \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=3.3 \pm 0.3 \mathrm{~V}$

(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	8.5	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PzL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	11.7	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	5.6	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {oshL }}$	(Note 1)		-	1.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} \mathrm{m}-\mathrm{t}_{\mathrm{LLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} \mathrm{m}-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.5. $\mathrm{V}_{\mathrm{CCA}}=1.5 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	8.6	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	14.3	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	6.6	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	1.5	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\text {PLH }} m-\mathrm{t}_{\text {PLH }}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.6. $\mathrm{V}_{\text {CCA }}=1.5 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=3.3 \pm 0.3 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	9.2	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	14.7	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	6.8	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	2.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\text {PLH }} m-\mathrm{t}_{\text {PLH }}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} n\right|\right)$
11.2.7. $\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PHL}}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	22	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	52	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	18	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	1.5	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} m-\mathrm{t}_{\mathrm{LLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} \mathrm{m}-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$

11.2.8. $\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}$

(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PHL}}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	22	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	52	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	18	
Output skew	$\mathrm{t}_{\mathrm{osLH}} / \mathrm{t}_{\mathrm{osHL}}$	(Note 1)		-	2.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} \mathrm{m}-\mathrm{t}_{\mathrm{PLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} \mathrm{m}-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.9. $\mathrm{VCCA}=1.8 \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=2.5 \pm 0.2 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	9.5	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	12.6	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	5.1	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	0.5	ns

Note 1: Parameter guaranteed by design. $\left(t_{o s L H}=\left|t_{\text {PLH }} m-t_{\text {PLH }} n\right|, t_{o s H L}=\left|t_{\text {PHL }} m-t_{\text {PHL }} n\right|\right)$
11.2.10. $\mathrm{V}_{\mathrm{CCA}}=1.8 \pm 0.15 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=2.5 \pm 0.2 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	10.4	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PzL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	14.0	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	5.6	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	1.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\text {PLH }} m-\mathrm{t}_{\text {PLH }}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.11. $\mathrm{V}_{\mathrm{CCA}}=1.5 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	10.5	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	15.4	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	6.4	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	1.5	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\text {PLH }} \mathrm{m}-\mathrm{t}_{\mathrm{PLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$

11.2.12. $\mathrm{V}_{\text {CCA }}=1.5 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{C C B}=2.5 \pm 0.2 \mathrm{~V}$

(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	11.2	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	16.3	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	6.6	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	2.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} \mathrm{m}-\mathrm{t}_{\mathrm{PLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} \mathrm{m}-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.13. $\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	23	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	54	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	17	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	1.5	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\text {PLH }} m-\mathrm{t}_{\text {PLH }}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.14. $\mathrm{V}_{\text {CCA }}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\text {CCB }}=2.5 \pm 0.2 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	23	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	54	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	17	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	2.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} m-\mathrm{t}_{\mathrm{PLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$
11.2.15. $\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=1.8 \pm 0.15 \mathrm{~V}$
(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\text {PHL }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	30	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	55	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	17	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {osHL }}$	(Note 1)		-	1.5	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\text {PLH }} m-\mathrm{t}_{\text {PLH }}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} m-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$

11.2.16. $\mathrm{V}_{\mathrm{CCA}}=1.2 \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCB}}=1.8 \pm 0.15 \mathrm{~V}$

(Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=-40$ to $125^{\circ} \mathrm{C}$, Input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$)

Characteristics	Symbol	Note	Test Condition	Min	Max	Unit
Propagation delay time ($\mathrm{An} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PHL}}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	30	ns
3-state output enable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	55	
3-state output disable time ($\overline{\mathrm{OE}} \rightarrow \mathrm{Bn}$)	$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PHZ }}$		See Fig. 12.1, 13.1 Table 12.1.1, 12.1.2, 13.1.1	1.0	17	
Output skew	$\mathrm{t}_{\text {osLH }} / \mathrm{t}_{\text {oshL }}$	(Note 1)		-	2.0	ns

Note 1: Parameter guaranteed by design. ($\left.\mathrm{t}_{\mathrm{osLH}}=\left|\mathrm{t}_{\mathrm{PLH}} \mathrm{m}-\mathrm{t}_{\mathrm{PLH}} \mathrm{n}\right|, \mathrm{t}_{\mathrm{osHL}}=\left|\mathrm{t}_{\text {PHL }} \mathrm{m}-\mathrm{t}_{\text {PHL }} \mathrm{n}\right|\right)$

11.3. Capacitive Characteristics (Unless otherwise specified, $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Note		$\mathrm{V}_{\text {CCA }}(\mathrm{V})$	$\mathrm{V}_{\text {CCB }}(\mathrm{V})$	Typ.	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$		An, $\overline{\mathrm{OE}}$	2.5	3.3	7	pF
Output capacitance	Cout		Bn	2.5	3.3	8	pF
Power dissipation capacitance	$\mathrm{C}_{\text {PDA }}$	(Note 1)	$\overline{\mathrm{OE}}=$ "L"	2.5	3.3	3	pF
			$\overline{\mathrm{OE}}=\mathrm{CH}$	2.5	3.3	0	
	CPDB	(Note 1)	$\overline{\mathrm{OE}}=$ "L"	2.5	3.3	13	
			$\overline{\mathrm{OE}}=\mathrm{H} \mathrm{H}$	2.5	3.3	0	

Note 1: $\mathrm{C}_{\text {PD }}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation.
$\mathrm{I}_{\mathrm{CC}(\mathrm{opr})}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 2$ (per bit)

12. AC Test Circuit

Fig. 12.1 AC Test Circuit

Table 12.1.1 Parameter for AC Test Circuit

Parameter	Switch	
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$	Open	$@ \mathrm{~V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PZL}}$	6.0 V	$@ \mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}$
	$\mathrm{~V}_{\mathrm{CCB}} \times 2$	$\mathrm{~V}_{\mathrm{CCB}}=1.8 \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PZH}}$	GND	

Table 12.1.2 Parameter for AC Test Circuit

Symbol	$\mathrm{V}_{\mathrm{CCB}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CCB}}=2.5 \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CCB}}=1.8 \pm 0.15 \mathrm{~V}$
R_{L}	500Ω	$1 \mathrm{k} \Omega$
C_{L}	30 pF	30 pF

13. AC Waveform

Fig. 13.1 tpLH, $t_{\text {PHL }}$

Fig. 13.2 $t_{\text {PLZ }}, t_{\text {PHZ }}, t_{\text {PZL }}, t_{\text {PZH }}$
Table 13.1.1 AC Waveform Symbols

Symbol	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=1.8 \pm 0.15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.5 \pm 0.1 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=1.2 \pm 0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH}}$	-	$\mathrm{V}_{\mathrm{CCA}}$	$\mathrm{V}_{\mathrm{CCA}}$
V_{IM}	-	$\mathrm{V}_{\mathrm{CCA}} / 2$	$\mathrm{~V}_{\mathrm{CCA}} / 2$
$\mathrm{~V}_{\mathrm{OM}}$	$\mathrm{V}_{\mathrm{OH}} / 2$	$\mathrm{~V}_{\mathrm{OH}} / 2$	-
V_{X}	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	-
V_{Y}	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	-

Package Dimensions

Weight: 0.01 g (typ.)
Package Name(s)
JEDEC: SOT-765
Nickname: US8

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA"
Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE").
Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant.
IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT.
For details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1)ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES \& STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by Toshiba manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ ADG3241BKSZ-500RL7 ADG3242BRJZ-REEL7

