Photocouplers GaAlAs Infrared LED & Photo IC

TLP2748

1. Applications

- Intelligent Power Module Signal Isolation
- Programmable Logic Controllers (PLCs)
- High-Speed Digital Interfacing for Instrumentation and Control Devices

2. General

The Toshiba TLP2748 consists of high-output GaAlAs light-emitting diode coupled with a high-gain, high-speed photo detector. It is housed in a thin SO6L package of 2.3 mm(max). The TLP2748 has guaranteed the isolation voltage 5 kVrms and compliant with international safety standards for reinforced insulation.

This product can operate in power supply voltage 4.5 V to 30 V with the maximum operative temperature of 110 °C. Since TLP2748 has guaranteed 3 mA low supply current (I_{CCL}/I_{CCH}), and 1.6 mA low threshold input current (I_{FHL}), it contributes to energy saving of devices. It can drive directly from a microcomputer for a low input current. The detector has a totem-pole output stage with current sourcing and sinking capabilities. The TLP2748 has an internal Faraday shield that provides a guaranteed common-mode transient immunity of ±30 kV/µs. The TLP2748 has an inverter output. A buffer output version, the TLP2745, is also available.

3. Features

- (1) Inverter logic type (Totem pole output)
- (2) Package: SO6L
- (3) Operating temperature: -40 to 110 °C
- (4) Supply voltage: 4.5 to 30 V
- (5) Threshold input current: 1.6 mA (max)
- (6) Supply current: 3 mA (max)
- (7) Propagation delay time: 120 ns (max)
- (8) Pulse width distortion: 40 ns (max)
- (9) Common-mode transient immunity: $\pm 30 \text{ kV/}\mu s$ (min)
- (10) Isolation voltage: 5000 Vrms (min)
- (11) Safety standards

UL-approved: UL1577, File No.E67349

cUL-approved: CSA Component Acceptance Service No.5A File No.E67349 VDE-approved: EN60747-5-5, EN60065, EN60950-1, EN 62368-1 **(Note 1)**

Note 1: When a VDE approved type is needed, please designate the Option (D4).

4. Packaging (Note)

Note: Lead-formed product: (LF4)

5. Pin Assignment

6. Internal Circuit (Note)

Note: A $0.1\mathchar`-\mu\mbox{F}$ bypass capacitor must be connected between pin 6 and pin 4.

7. Principle of Operation

7.1. Truth Table

Input	LED	Output
Н	ON	L
L	OFF	Н

7.2. Mechanical Parameters

Characteristics	Min	Unit
Creepage distances	8.0	mm
Clearance distances	8.0	
Internal isolation thickness	0.4	

8. Absolute Maximum Ratings (Note) (Unless otherwise specified, T_a = 25 °C)

	Characteristics	;	Symbol	Note	Rating	Unit
LED	Input forward current		I _F		15	mA
	Input forward current derating	$(T_a \ge 110 \ ^\circ C)$	$\Delta I_F / \Delta T_a$		-0.33	mA/°C
	Peak transient input forward current		I _{FPT}	(Note 1)	1	A
	Input power dissipation		PD		40	mW
	Input power dissipation derating	$(T_a \ge 110 \ ^\circ C)$	$\Delta P_D / \Delta T_a$		-0.89	mW/°C
	Input reverse voltage		V _R		5	V
Detector	Output current		I _O		50 / -50	mA
	Output voltage		Vo		-0.5 to 30	V
	Supply voltage		V _{CC}		-0.5 to 30	V
	Output power dissipation		Po		100	mW
	Output power dissipation derating	(T _a ≥ 75 °C)	$\Delta P_0 / \Delta T_a$		-2	mW/°C
Common	Operating temperature		T _{opr}		-40 to 110	°C
	Storage temperature		T _{stg}		-55 to 125	°C
	Lead soldering temperature	(10 s)	T _{sol}		260	°C
	Isolation voltage	(AC, 60 s, R.H. ≤ 60 %)	BVS	(Note 2)	5000	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Pulse width (PW) \leq 1 $\mu s,\,300$ pps

Note 2: This device is considered as a two-terminal device: Pins 1, 2 and 3 are shorted together, and pins 4, 5 and 6 are shorted together.

9. Recommended Operating Conditions (Note)

Characteristics	Symbol	Note	Min	Тур.	Max	Unit
Input on-state current	I _{F(ON)}	(Note 1)	2	_	10	mA
Input off-state voltage	V _{F(OFF)}		0		0.8	V
Supply voltage	V _{CC}	(Note 2)	4.5		30	
Operating temperature	T _{opr}	(Note 2)	-40		110	°C

Note: The recommended operating conditions are given as a design guide necessary to obtain the intended performance of the device. Each parameter is an independent value. When creating a system design using this device, the electrical characteristics specified in this data sheet should also be considered.

Note: A ceramic capacitor (0.1 µF) should be connected between pin 6 and pin 4 to stabilize the operation of a highgain linear amplifier. Otherwise, this photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: The rise and fall times of the input on-current should be less than 0.5 $\mu s.$

Note 2: Denotes the operating range, not the recommended operating condition.

10. Electrical Characteristics (Note) (Unless otherwise specified, T_a = -40 to 110 °C, V_{CC} = 4.5 to 30 V)

Characteristics	Symbol	Note	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Input forward voltage	V _F		—	I _F = 3 mA, T _a = 25 °C	1.35	1.55	1.65	V
Input forward voltage temperature coefficient	$\Delta V_F / \Delta T_a$		_	I _F = 3 mA	_	-2.0	Ι	mV/°C
Input reverse current	I _R			V _R = 5 V, T _a = 25 °C	_	—	10	μA
Input capacitance	Ct			V = 0 V, f = 1 MHz, T _a = 25 °C	—	20		pF
Low-level output voltage	V _{OL}		Fig.	I _F = 3 mA, I _O = 3.5 mA	_	0.026	0.2	V
			13.1.1	I _F = 3 mA, I _O = 6.5 mA	_	0.047	0.4	
High-level output voltage	V _{OH}		Fig.	V _F = 0.8 V, I _O = -3.5 mA	V _{CC} -0.2	V _{CC} -0.03		
			13.1.2	V _F = 0.8 V, I _O = -6.5 mA	V _{CC} -0.4	V _{CC} -0.05		
Low-level supply current	I _{CCL}		Fig.	I _F = 3 mA, V _{CC} = 5.5 V	_	2.1	3	mA
			13.1.3	I _F = 3 mA, V _{CC} = 30 V		2.35	3	
High-level supply current	I _{CCH}		Fig.	V _{CC} = 5.5 V	_	2.1	3	
			13.1.4	V _{CC} = 30 V	_	2.35	3	
Low-level short-circuit output	I _{OSL}		Fig.	I _F = 3 mA, V _{CC} = V _O = 5.5 V	150	280	_	
current			13.1.5	I _F = 3 mA, V _{CC} = V _O = 20 V	160	300	_	
High-level short-circuit output	I _{OSH}		Fig.	V _{CC} = 5.5 V, V _O = GND	_	-350	-150	
current			13.1.6	V _{CC} = 20 V, V _O = GND		-350	-160	
Threshold input current (H/L)	I _{FHL}		_	I _O = 3.5 mA, V _O < 0.2 V, V _{CC} = 5 V	—	—	1.6	
Input current hysteresis	I _{HYS}		_	l _O = 3.5 mA	_	0.1	—	
Threshold input voltage (L/H)	V _{FLH}			I _O = -6.5 mA, V _O > (V _{CC} -0.4 V)	0.8	—	_	V

Note: All typical values are at V_{CC} = 5 V, T_a = 25 °C, unless otherwise noted.

11. Isolation Characteristics (Unless otherwise specified, Ta = 25 °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Total capacitance (input to output)	CS	(Note 1)	V _S = 0 V, f = 1 MHz	—	0.8	_	pF
Isolation resistance	R _S	(Note 1)	V_S = 500 V, R.H. \leq 60 %	1 × 10 ¹²	1 × 10 ¹⁴	_	Ω
Isolation voltage	BVS	(Note 1)	AC, 60 s	5000	—	_	Vrms

Note 1: This device is considered as a two-terminal device: Pins 1, 2 and 3 are shorted together, and pins 4, 5 and 6 are shorted together.

12. Switching Characteristics (Note) (Unless otherwise specified, $T_a = -40$ to 110 °C, $V_{CC} = 4.5$ to 30 V)

Characteristics	Symbol	Note	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Propagation delay time (H/L)	t _{pHL}	(Note 1)	Fig.	$I_F = 0 \rightarrow 3 \text{ mA}$	35	_	120	ns
Propagation delay time (L/H)	t _{pLH}		13.1.7	I_F = 3 \rightarrow 0 mA	35	—	120	
Pulse width distortion	t _{pHL} -t _{pLH}			I _F = 3 mA	_	_	40	
Propagation delay skew (device to device)	t _{psk}	(Note 1), (Note 2)		I _F = 3 mA	-70	_	70	
Fall time	t _f	(Note 1)	1	$I_F = 0 \rightarrow 3 \text{ mA}$		3	30	
Rise time	t _r			$I_F = 3 \rightarrow 0 \text{ mA}$	_	3	30	
Common-mode transient immunity at output high	CM _H		Fig. 13.1.8	I _F = 0 mA, V _{CC} = 30 V, V _{CM} = 1500 V _{p-p} , T _a = 25 °C	±30	±50		kV/μs
Common-mode transient immunity at output low	CML			I _F = 3 mA, V _{CC} = 30 V, V _{CM} = 1500 V _{p-p} , T _a = 25 °C	±30	±50	_	

Note: All typical values are at V_{CC} = 5 V, T_a = 25 °C, unless otherwise noted.

Note 1: f = 50 kHz, duty = 50 %, input current $t_r = t_f = 5$ ns, C_L is approximately 15 pF which includes probe and stray wiring capacitance.

Note 2: The propagation delay skew, t_{psk}, is equal to the magnitude of the worst-case difference in t_{pHL} and/or t_{pLH} that will be seen between units at the same given conditions (supply voltage, input current, temperature, etc).

13. Test Circuits and Characteristics Curves

13.1. Test Circuits

Fig. 13.1.1 V_{OL} Test Circuit

Fig. 13.1.3 I_{CCL} Test Circuit

Fig. 13.1.5 I_{OSL} Test Circuit

Fig. 13.1.2 V_{OH} Test Circuit

Fig. 13.1.4 I_{CCH} Test Circuit

Fig. 13.1.6 I_{OSH} Test Circuit

Fig. 13.1.7 Switching Time Test Circuit and Waveform

Fig. 13.1.8 Common-Mode Transient Immunity Test Circuit and Waveform

13.2. Characteristics Curves (Note)

Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

14. Soldering and Storage

14.1. Precautions for Soldering

The soldering temperature should be controlled as closely as possible to the conditions shown below, irrespective of whether a soldering iron or a reflow soldering method is used.

• When using soldering reflow.

The soldering temperature profile is based on the package surface temperature.

(See the figure shown below, which is based on the package surface temperature.)

Reflow soldering must be performed once or twice.

The mounting should be completed with the interval from the first to the last mountings being 2 weeks.

	Symbol	Min	Max	Unit
Preheat temperature	Ts	150	200	°C
Preheat time	ts	60	120	S
Ramp-up rate $(T_L \text{ to } T_P)$			3	°C/s
Liquidus temperature	TL	2	°C	
Time above T_L	tL	60	150	S
Peak temperature	Τ _Ρ		260	°C
Time during which T _c is between (T _P – 5) and T _P	t _P		30	s
Ramp-down rate (T_P to T_L)			6	°C/s

An example of a temperature profile when lead(Pb)-free solder is used

• When using soldering flow

Preheat the device at a temperature of 150 °C (package surface temperature) for 60 to 120 seconds. Mounting condition of 260 °C within 10 seconds is recommended.

Flow soldering must be performed once.

• When using soldering Iron

Complete soldering within 10 seconds for lead temperature not exceeding 260 °C or within 3 seconds not exceeding 350 °C

Heating by soldering iron must be done only once per lead.

14.2. Precautions for General Storage

- Avoid storage locations where devices may be exposed to moisture or direct sunlight.
- Follow the precautions printed on the packing label of the device for transportation and storage.
- Keep the storage location temperature and humidity within a range of 5 °C to 35 °C and 45 % to 75 %, respectively.
- Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- When restoring devices after removal from their packing, use anti-static containers.
- Do not allow loads to be applied directly to devices while they are in storage.
- If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.

15. Land Pattern Dimensions (for reference only)

Unit: mm

TLP2748

Fig. 15.2 Lead Forming Option (LF4)

16. Marking

17. EN60747-5-5 Option (D4) Specification

- Part number: TLP2748 (Note 1)
- The following part naming conventions are used for the devices that have been qualified according to option (D4) of EN60747.

Example: TLP2748(D4-TP,E

D4: EN60747 option TP: Tape type

E: [[G]]/RoHS COMPATIBLE (Note 2)

Note 1: Use TOSHIBA standard type number for safety standard application.

e.g., TLP2748(D4-TP,E \rightarrow TLP2748

Note 2: Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.

RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Description	Symbol	Rating	Unit
Application classification			
for rated mains voltage \leq 600 Vrms for rated mains voltage \leq 1000 Vrms		I-IV I-III	_
Climatic classification		55 / 125 / 21	
Pollution degree		2	_
Maximum operating insulation voltage	VIORM	1230	Vpeak
Input to output test voltage, Method A V_{pr} = 1.6 × V _{IORM} , type and sample test t_p = 10 s, partial discharge < 5 pC	V _{pr}	1970	Vpeak
Input to output test voltage, Method B $V_{pr} = 1.875 \times V_{IORM}$, 100 % production test $t_p = 1$ s, partial discharge < 5 pC	Vpr	2310	Vpeak
Highest permissible overvoltage (transient overvoltage, t _{pr} = 60 s)	V _{TR}	8000	Vpeak
Safety limiting values (max. permissible ratings in case of fault, also refer to thermal derating curve) current (input current I _F , P _{so} = 0) power (output or total power dissipation) temperature	I _{si} P _{so} Ts	250 400 150	mA mW °C
Insulation resistance $V_{IO} = 500 \text{ V}, \text{ T}_{a} = 25 \text{ °C}$ $V_{IO} = 500 \text{ V}, \text{ T}_{a} = 100 \text{ °C}$ $V_{IO} = 500 \text{ V}, \text{ T}_{a} = \text{ T}_{s}$	R _{si}	$\geq 10^{12}$ $\geq 10^{11}$ $\geq 10^{9}$	Ω

Fig. 17.1 EN60747 Insulation Characteristics

Minimum creepage distance	Cr	8.0 mm
Minimum clearance	CI	8.0 mm
Minimum insulation thickness	ti	0.4 mm
Comparative tracking index	CTI	175

Fig. 17.2 Insulation Related Specifications (Note)

Note: This photocoupler is suitable for **safe electrical isolation** only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.

Fig. 17.4 Marking Example (Note)

Note: The above marking is applied to the photocouplers that have been qualified according to option (D4) of EN60747.

18. Specifications for Embossed-Tape Packing

18.1. Applicable Package

Package Name	Product Type	
SO6L / SO6L(LF4)	Long creepage mini flat coupler	

18.2. Product Naming Conventions

Type of package used for shipment is denoted by a symbol suffix after a part number. The method of classification is as below.

Example) TLP2748(TP,E

Part number: TLP2748 Tape type: TP [[G]]/RoHS COMPATIBLE: E **(Note 1)**

Note 1: Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.

RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

18.3. Tape Dimensions Specification

Таре Туре	Division	Packing Amount (A unit per reel)
TP / TP4	_	1500

18.3.1. Orientation of Device in Relation to Direction of Feed

Device orientation in the carrier cavities as shown in the following figure.

Orientation of Device in Relation to Direction of Tape Movement

18.3.2. Empty Device Recesses

Characteristics	Standard	Remarks
Occurrences of 2 or more successive empty cavities	0 device	Within any given 40-mm section of tape, not including leader and trailer
Single empty cavity	6 devices (max) per reel	Not including leader and trailer

18.3.3. Tape Leader and Trailer

The start of the tape has 14 or more empty holes. The end of the tape has 34 or more empty holes and a cover tape of 30 mm or longer.

18.3.4. Tape Dimensions

Tape material: Plastic (for protection against static electricity)

Table	Tape Dimensions	(unit: mm. tolerance: ±0.1)

Symbol	Dimension (standard)	Dimension (LF4)	Remark	
А	10.4	11.55	_	
В	4.24	4.24	_	
D	7.5	7.5	Center line of embossed cavity and sprocket hole	
E	1.75	1.75	Distance between tape edge and sprocket hole center	
F	12.0	16.0	Cumulative error +0.1/-0.3 per 10 empty cavities holes	
G	4.0	4.0	Cumulative error +0.1/-0.3 per 10 sprocket holes	
К	2.7	2.8	_	
K ₀	2.4	2.4	Internal space	

18.3.5. Reel Specification

Material: Plastic (for protection against static electricity)

Table Reel Dimensions (unit: mm)

Symbol	Dimension
A	$\phi 330 \pm 2.0$
В	φ100 ± 1.0
С	$\varphi 13 \pm 0.5$
E	2.0 ± 0.5
U	4.0 ± 0.5
W1	17.4 ± 1.0
W2	21.4 ± 1.0

18.4. Packing (Note)

Note: Taping reel diameter: \$330 mm

18.5. Label Format

(1) Carton: The label provides the part number, quantity, lot number, the Toshiba logo, etc.

(2) Reel: The label provides the part number, the taping name, quantity, lot number, etc.

19. Ordering Information (Example of Item Name)

Item Name	Packaging	VDE Option	Packing (MOQ)
TLP2748(E			Magazine (125 pcs)
TLP2748(TP,E			Tape and reel (1500 pcs)
TLP2748(D4,E		EN60747-5-5	Magazine (125 pcs)
TLP2748(D4-TP,E		EN60747-5-5	Tape and reel (1500 pcs)
TLP2748(LF4,E	LF4, Wide forming		Magazine (125 pcs)
TLP2748(TP4,E	LF4, Wide forming		Tape and reel (1500 pcs)
TLP2748(D4-LF4,E	LF4, Wide forming	EN60747-5-5	Magazine (125 pcs)
TLP2748(D4-TP4,E	LF4, Wide forming	EN60747-5-5	Tape and reel (1500 pcs)

Package Dimensions

TLP2748

Unit: mm

Weight: 0.126 g (typ.)

	Package Name(s)
TOSHIBA: 11-4N1A	

Package Dimensions

Unit: mm

TLP2748

Weight: 0.126 g (typ.)

Package Name(s) TOSHIBA: 11-4N101A

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for toshiba manufacturer:

Other Similar products are found below :

 TLP250(F)
 TC7W125FU(TE12L,F)
 TC7SBL384CFU,LF
 TLP183(GB,E
 431392HB
 EMPP008Z
 TC58DVM92A5TA00

 TK8A60DA(STA4,Q,M)
 TLP291(TP,E)
 TLP705A(F)
 TLP5214(D4-TP,E
 TLP591B(C,F)
 2SA1943N(S1,E,S)
 TLP352(LF1,F)
 TLP2409(F)

 TLP109(TPR,E)
 TC4013BP(N,F
 TCK112G,LF
 TLP184(GB-TPL,E(O
 TLP185(GR-TPL,E(O
 TLP108
 VFNC3S-2015PL
 VFS15-4007PL-W

 TLP7820(D4-A,E
 TLP385(GB,E
 TPH4R10ANL,L1Q
 SSM3J35AMFV,L3F
 THRIVECOVER
 1SS392(TE85L,F)
 TCK22971G,LF

 TK28A65W,S5X
 TK6A80E,S4X
 058399HB
 TORX177F,T
 TK31A60W,S4VX
 TLP190B(U,C,F)
 VFS15S-2015PL-W
 TK39N60W5,S1VF

 TLP2362(E)
 74VHC125FT
 TLP759(LF1,J,F)
 TLP5754(D4,E
 TLP4026G(F)
 TK8A65W,S5X
 TC7W14FUTE12LF
 TB6568KQ(O,8)

 TLP292(E
 74HC138D
 SW89CN0-ZCC
 THGAF8T1T83BAIR
 TLP4026G(F)
 TK8A65W,S5X
 TC7W14FUTE12LF
 TB6568KQ(O,8)