TOSHIBA Photocoupler

IRED & Photo IC

TLP559(IGM)

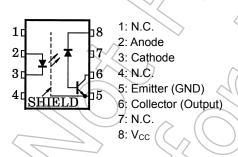
Transistor Inverters
Air Conditioner Inverters
Line Receivers
Intelligent Power Modules (IPMs) Interfaces

The TOSHIBA TLP559(IGM) consists of a high-output infrared emitting diode optically coupled to a high-speed photodiode with a transistor amplifier.

The TLP559(IGM) has no internal base connection. The Faraday shield in the photodetector chip provides an effective common-mode noise transient immunity.

The TLP559(IGM) guarantees minimum and maximum propagation delay time, a relative time difference between the rise and fall time, and common-mode transient immunity. Therefore, the TLP559(IGM) is suitable for an isolation interface between an Intelligent Power Module (IPM) and a control IC in motor control applications.

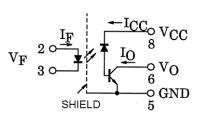
- Isolation Voltage: 2500 Vrms (min)
- Common-Mode Transient Immunity: ±10 kV/μs (min) @VCM = 1500 V_{p-p}
- Switching Time: tpHL, tpLH = 0.1μs (min), = 0.8μs (max)


@IF = 10 mA, VCC = 15 V, RL = 20 k
$$\Omega$$
, Ta = 25°C

Switching Time Dispersion: 0.7 μs (max)

- TTL Compatible
- UL-recognized: UL 1577, File No.E67349
- cUL-recognized: CSA Component Acceptance Service No.5A

File No.E67349


Pin Configuration (Top view)

Unit: mm 9.66±0.25 1.2±0.15 1.5±0.1 TOSHIBA 11–10C4S

Weight: 0.54 g (typ.)

Schematic

Start of commercial production 1995-01

Absolute Maximum Ratings (Ta = 25°C)

	CHARACTERISTIC		SYMBOL	RATING	UNIT
	Forward Current	(Note 1)	lF	25	mA
	Pulse Forward Current	(Note 2)	IFP	50	mA
ΓE	Peak Transient Forward Current	(Note 3)	IFPT	1	Α
	Reverse Voltage		VR	5	V
	Diode Power Dissipation	(Note 4)	PD	45	mW
	Output Current		lo (7/8	mA
TOR	Peak Output Current		IQP	16	mA
TECT	Output Voltage		Yo	-0.5 to 20	V
DET	Supply Voltage		Vcc	-0.5 to 30	V
	Output Power Dissipation	(Note 5)	Po	100	mW
Оре	rating Temperature Range		Topr	-55 to 100	\ °C \
Stor	age Temperature Range	(7)	Tstg	-55 to 125	્રેં
Lea	d Solder Temperature(10 s)	(Note 6)	T _{sol}	260	Ç
Isola	ation Voltage(AC, 60 s, R.H.≤60 %)	(Note 7)	BVs	2500	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

(Note 1) Derate 0.8 mA above 70 °C.

(Note 2) 50 % duty cycle, 1 ms pulse width. Derate 1.6 mA/°C above 70 °C.

(Note 3) Pulse width PW $\leq 1 \mu s$, 300 pps.

(Note 4) Derate 0.9 mW/°C above 70°C.

(Note 5) Derate 2 mW/°C above 70°C.

(Note 6) Soldering portion of lead : up to 2mm from the body of the device.

(Note 7) Device considers a two-terminal device : pins 1, 2, 3 and 4 shorted together and pins 5, 6, 7 and 8 shorted together.

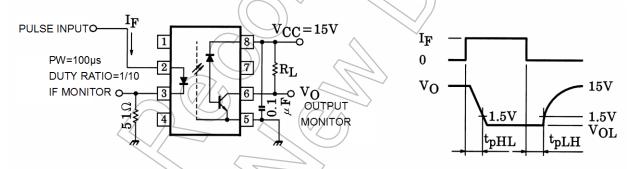
Electrical Characteristics (Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
ED	Forward Voltage	V _F	I _F = 16 mA	_	1.65	1.85	V
	Forward Voltage Temperature Coefficient	ΔV _F /ΔTa	IF = 16 mA	-	-2	_	mV /°C
=	Reverse Current	IR	V _R = 5 V		_	10	μΑ
	Capacitance between Terminal	СТ	V = 0 V, f = 1 MHz		45	_	pF
DETECTOR	High Level Output Current	IOH (1)	I _F = 0 mA, V _{CC} = V _O = 5.5 V		3	500	nA
		IOH (2)	I _F = 0 mA, V _{CC} = 30 V V _O = 20 V	/	_	5	
		Іон	IF = 0 mA, V _{CC} = 30 V V _O = 20 V, Ta = 70 °C	_	_	50	μΑ
	High Level Supply Voltage	Іссн	IF = 0 mA, V _{CC} = 30 V	_	0.01	1	μΑ
	Supply Voltage	Vcc	ICC = 0.01 mA	30	JE!	_	V
	Output Voltage	Vo	I _O = 0.5 mA	20	1	_	V

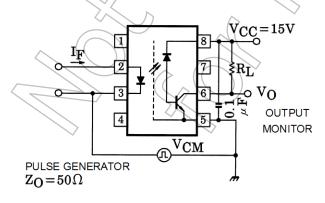
Coupled Electrical Characteristics (Ta = 25°C)

CHARACTERISTIC	SYMBOL TEST CONDITION	MIN	TYP.	MAX	UNIT
Current Transfer Ratio	I _O / I _F V _O = 0.4 V V _O =	25	35	75	%
Current Harister Ratio	$I_F = 10 \text{ mA}, V_{CC} = 4.5 \text{ V}$ $V_O = 0.4 \text{ V}, T_a = -25 \text{ to } 100 ^{\circ}\text{C}$	15	_		70
Low Level Output Voltage	V _{OL} I _F = 16 mA, V _{CC} = 4.5 V I _O = 2.4 mA	ı	_	0.4	V

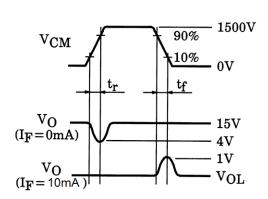
Isolation Characteristics (Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITIO	N	MIN	TYP.	MAX	UNIT
Capacitance Input to Output	Cs	V = 0 V, f = 1 MHz	(Note 7)	_	8.0	_	pF
Isolation Resistance	Rs	R.H. ≤ 60 %, V _S = 500 V	(Note 7)	5×10 ¹⁰	10 ¹⁴	_	Ω
Isolation Voltage	BVs	AC, 60 s	(Note 7)	2500	_	_	Vrms

Switching Characteristics (Ta = 25°C, Vcc = 15 V)


CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Propagation Delay Time (H→L)	t _{pHL} t _{pLH}	1	I_F = 10 mA, R_L = 20 kΩ	0.1	0.45	0.8	μs
			I_F = 10 mA, R_L = 20 k Ω Ta = 0 to 85 °C	0.1	0.45	0.9	
Propagation Delay Time (L→H)			I_F = 10 mA, R_L = 20 kΩ Ta = -25 to 100 °C	0.1	0.45	1.0	
] '	IF = 10 mA, R _L = 20 kΩ		0.25	0.7	
Switching Time Dispersion between ON and OFF	t _р н-t _р нг		I_F = 10 mA, R_L = 20 k Ω Ta = 0 to 85 °C	}	0.25	0.8	μs
Disposion between Civalia of I			I _F = 20 mA, R _L = 20 kΩ Ta = -25 to 100 °C	_	0.25	0.9	
Common Mode Transient Immunity at Logic High Output (Note 8)	СМн	- 2	$I_F = 0 \text{ mA},$ $V_{CM} = 1500 \text{ V}_{p-p},$ $R_L = 20 \text{ k}\Omega$	10000	15000	<u> </u>	V /μs
Common Mode Transient Immunity at Logic Low Output (Note 8)	CML		$I_F = 10 \text{ mA},$ $V_{CM} = 1500 \text{ Vp-p},$ $R_L = 20 \text{ k}\Omega$	-10000	-15000	-	V /μs

(Note 8) CM_L is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state(Vo<1 V).</p>
CM_H is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state(Vo>4 V).


Test Circuit 1: Switching time test circuit

Test Circuit 2: Common mode noise immunity test circuit

$${\rm CM}_{H} = \frac{1200(V)}{{\rm t}_{\rm r}(\mu {\rm s})} \,, \ \, {\rm CM}_{L} = \frac{1200(V)}{{\rm t}_{\rm f}(\mu {\rm s})} \label{eq:cm}$$

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical
 equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to
 control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative or contact us via our website.
- . Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of
 Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled
 substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Optocouplers category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

HCPL-2201-300 TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM HCPL2630SM PS9817A-1-F3-AX EL816S2(C)(TU)-F TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP2301(E(T TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2561L2-1-F3-A PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V 6N135SDM 6N137SDM 6N138-000E