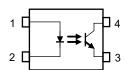
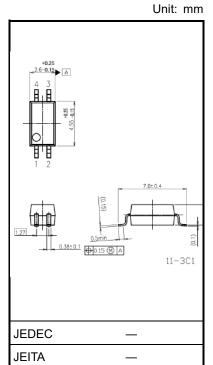
TOSHIBA Photocoupler IRLED & Photo-Transistor

TLX9291A


- Various Controllers
- O Signal transmission between different circuit potential
- HEV (Hybrid Electric Vehicle) and EV (Electric Vehicle) Applications

The TOSHIBA TLX9291A mini-flat photocoupler is suitable for surface-mount assembly. The TLX9291A consists of an infrared LED optically coupled to a photo-transistor.


This photocoupler can be used to the extensive applications. It is generic speed transistor output.

- Collector-emitter voltage: 80 V (min)
- Current transfer ratio: 50 % (min) to 600 %(max)
 Rank GB: 100 % (min) to 600 %(max)
- Isolation voltage: 3750 Vrms (min)
- AEC-Q101 qualified

Pin Configuration

- 1: Anode
- 2: Cathode
- 3: Emitter
- 4: Collector

11-3C1

Weight: 0.05 g (typ.)

TOSHIBA

Absolute Maximum Ratings (Note) (Unless otherwise specified, Ta = 25°C)

	Characteristic			Rating	Unit
	Forward current		lF	30	mA
	Forward current (Ta=125°C)		lF	18	mA
	Forward current derating (Ta ≥ 108 °C)		ΔIF/°C	-0.7	mA/°C
LED	Pulse forward current	(Note 1)	IFP	1	Α
	Input Power Dissipation		PD	50	mW
	Input Power Dissipation Derating (Ta ≥ 50°C)		ΔPD/°C	-0.5	mW/°C
	Reverse voltage		VR	5	V
	Collector-emitter voltage		V _{CEO}	80	V
٦c	Emitter-collector voltage		V _{ECO}	7	V
Detector	Collector current		Ic	50	mA
Ğ	Collector power dissipation		Pc	150	mW
	Collector power dissipation derating (Ta ≥ 50°C)		ΔP _C /°C	-1.5	mW/°C
Оре	Operating temperature range		T _{opr}	-40 to 125	°C
Sto	Storage temperature range		T _{stg}	-55 to 150	°C
Lea	Lead soldering temperature (10s)		T _{sol}	260	°C
Total package power dissipation			PT	200	mW
Tota	Total package power dissipation derating (Ta ≥ 50°C)		ΔP _T /°C	-2.0	mW/°C
Isol	Isolation voltage (AC, 60 s, R.H. ≤ 60 %)		BVS	3750	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Pulse width PW ≤ 100 μs, 100 Hz

Note 2: This device is considered as a two terminal device: Pins 1 and 2 are shorted together, and pins 3 and 4 are shorted together.

Recommended Operating Conditions (Note)

Characteristic	Symbol	Min	Тур.	Max	Unit
Supply voltage	Vcc	_	5	48	V
Forward current	lF	_	10	15	mA
Collector current	Ic	_	1	10	mA
Operating temperature (Note 1)	Topr	-40	_	125	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Note 1: Denotes the operating range, not the recommended operating condition.

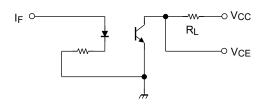
Electrical Characteristics (Unless otherwise specified, Ta = -40 to 125°C)

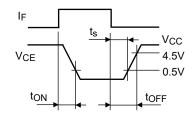
	Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
LED	Forward voltage	VF	I _F = 10 mA, Ta=25 °C	1.1	1.27	1.4	V
			IF = 10 mA	1.0	_	1.55	V
	Reverse current	IR	V _R = 5 V	_	_	10	μΑ
	Capacitance	Ст	V = 0 V, f = 1 MHz, Ta=25 °C	_	35	_	pF
Detector	Collector-emitter breakdown voltage	V(BR)CEO	IC = 0.5 mA	80	_	1	V
	Emitter-collector breakdown voltage	V(BR)ECO	IE = 0.1 mA	7	_	_	V
	Collector dark current ICEO		V _{CE} = 48 V, Ta=25 °C	_	10	100	nA
		ICEO	V _{CE} = 48 V, Ta=105 °C	_	5	50	μΑ
			V _{CE} = 48 V, Ta=125 °C	_	30	100	μА
	Capacitance (collector to emitter)	C _{CE}	V = 0 V, f = 1 MHz, Ta=25 °C	_	10	_	pF

Coupled Electrical Characteristics (Unless otherwise specified, Ta = -40 to 125°C)

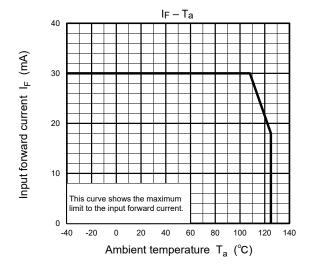
Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Current transfer ratio	IC/IF	I _F = 5 mA, V _{CE} = 5 V	20	_	600	%
		I _F = 5 mA, V _{CE} = 5 V, Ta=25 °C	50	_	600	
		I_F = 5 mA, V_{CE} = 5 V , Ta=25 °C Rank GB	100	_	600	
Saturated CTR	IC/IF(sat)	I _F = 1 mA, V _{CE} = 0.4 V, Ta=25 °C	_	200	_	%
		I _F = 1 mA, V _{CE} = 0.4 V, Ta=25 °C Rank GB	30	_	_	
Collector-emitter saturation voltage	VCE(sat)	IC = 2.4 mA, I _F = 8 mA, Ta=25 °C		_	0.4	
		I _C = 0.2 mA, I _F = 1 mA		_	0.4	V
		Ta=25 °C	_	0.1	0.4	
Off-state collector current	IC(off)	V _F = 0.7 V, V _{CE} = 48 V , Ta=25 °C	_	_	10	μΑ

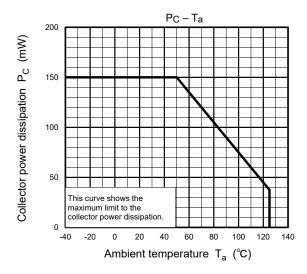
Isolation Characteristics (Ta = 25°C)

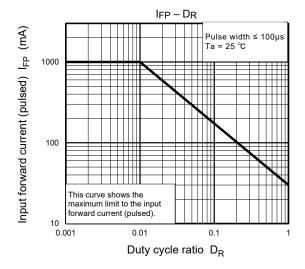

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Capacitance (input to output)	Cs	V _S = 0 V, f = 1 MHz	_	0.5	_	pF
Isolation resistance	Rs	V _S = 500 V, R.H. ≤ 60 %	5×10 ¹⁰	10 ¹⁴	_	Ω
Isolation voltage	BVs	AC, 60 s	3750	_	_	Vrms

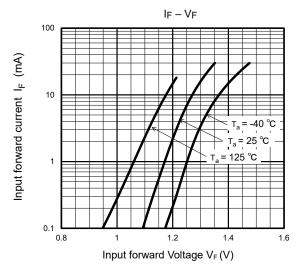

Note: This device is considered as a two terminal device: Pins 1 and 2 are shorted together, and pins 3 and 4 are shorted together.

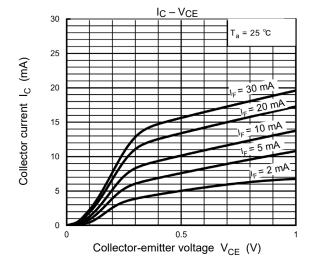
Switching Characteristics (Ta = 25°C)

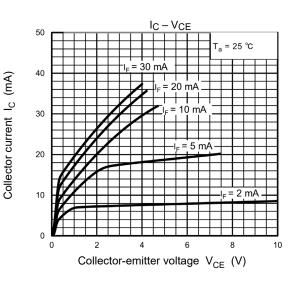

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Rise time	t _r		_	3	_	
Fall time	tf	V _{CC} = 10 V, I _C = 2 mA	_	5	_	μs
Turn-on time	t _{on}	$R_L = 100\Omega$	_	5	_	
Turn-off time	t _{off}		_	5	_	
Turn-on time	ton		_	2	_	
Storage time	ts	$R_L = 1.9 \text{ k}\Omega$ (Note 1) $V_{CC} = 5 \text{ V}, I_F = 16 \text{ mA}$	_	25	_	μS
Turn-off time	toff	, , , , , , , , , , , , , , , , , , , ,	_	45	_	

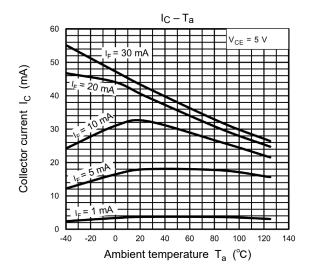

Note 1: Switching time test circuit

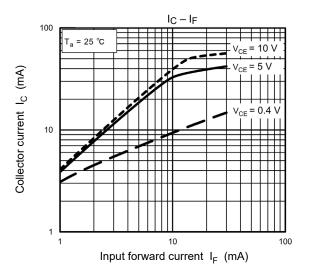


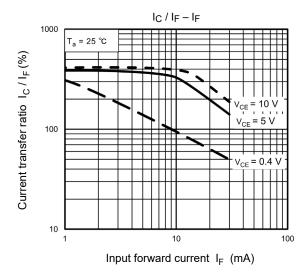


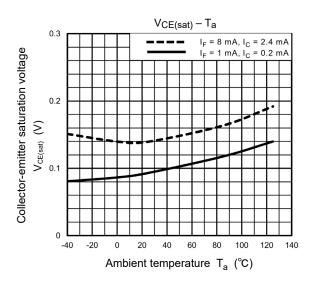

Characteristic Curves (Note)

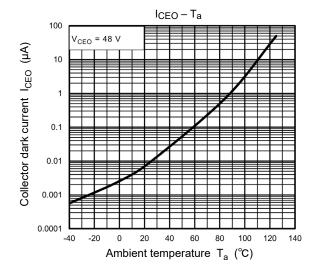


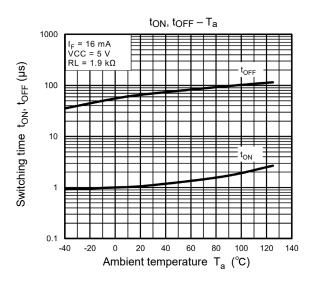


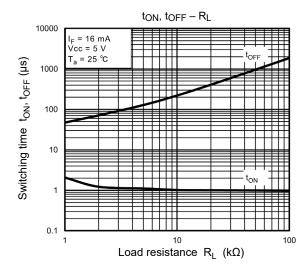


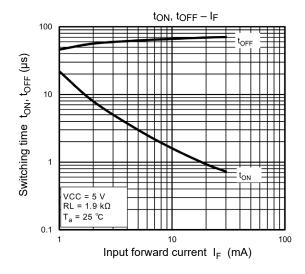












Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise specified.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical
 equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to
 control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of
 Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled
 substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D21066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED