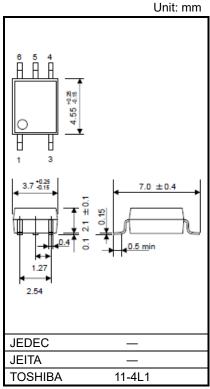
TOSHIBA PHOTOCOUPLER IRLED & PHOTO-IC

TLX9376

HEV (Hybrid Electric Vehicle) and EV (Electric Vehicle) Applications

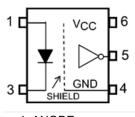
The Toshiba TLX9376 consists of an infrared LED and integrated high gain, high-speed photodetector. The TLX9376 is housed in the SO6 package. It has a totem-pole output that can both sink and source current. The photodetector has an internal Faraday shield that provides a guaranteed common-mode transient immunity of 15 kV/ μ s. TLX9376 guarantees minimum and maximum of propagation delay time, switching speed dispersion, and high common mode transient immunity.

Input current logic LOW output : 4.0 mA (max)


Switching Speed : tpHL = 35 ns (max)

: tpLH = 35 ns (max)

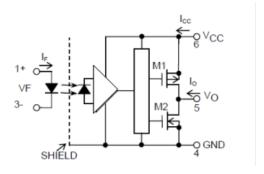
Common mode transient immunity : 15kV/µs (min)
 Operating Temperature : -40 to 125°C


Isolation voltage : 3750 Vrms (min)

AEC-Q101 qualified

Weight: 0.08 g (typ.)

Pin Configuration



- 1: ANODE
- 3: CATHODE
- 4: GND
- 5: VO
- 6: VCC

Truth Table

Input	LED	M1	M2	Output
Н	ON	OFF	ON	L
L	OFF	ON	OFF	Н

Schematic

A ceramic capacitor (0.1 μ F) should be connected from pin 6 (VCC) to pin 4 (GND) to stabilize the operation of the high gain linear amplifier. Failure to provide the bypass may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

Absolute Maximum Ratings (Note) (Unless otherwise specified, Ta = 25°C)

	Characteristic		Symbol	Rating	Unit
	Forward Current		lF	25	mA
	Forward Current (Ta=125 °C)		lF	15	mA
	Forward Current Derating (Ta ≥ 70 °C)		ΔI _F /°C	-0.18	mA/°C
ED	Pulse Forward Current	(Note 1)	IFPT	1	Α
	Input Power Dissipation		PD	50	mW
	Input Power Dissipation Derating (Ta ≥ 110°C)		ΔPD/°C	-1.73	mW/°C
	Reverse Voltage		VR	5	V
	Output Current		lo	10	mA
Q R	Output Voltage		VO	6	V
DETECTOR	Supply Voltage	(Note 2)	Vcc	6	V
DET	Output Power Dissipation		P _O	40	mW
	Output Power Dissipation Derating (Ta ≥ 110°C)		ΔP _O /°C	-2.07	mW/°C
Stora	ge Temperature Range		T _{stg}	-55 to 150	°C
Oper	ating Temperature Range		T _{opr}	-40 to 125	°C
Lead	Soldering Temperature (10 s)		T _{sol}	260	°C
Isola	tion Voltage (AC,60 s.,R.H.≤ 60 %)	(Note 3)	BVs	3750	V _{rms}

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Pulse width \leq 1 μs , 300 pps

Note 2: 60 s. (max)

Note 3: This device is considered as a two terminal device: Pins 1 and 3 are shorted together, and pins 4, 5 and 6 are shorted together.

Recommended Operating Conditions (Note)

Characteristic	Symbol	Min	Тур.	Max	Unit
Input current logic LOW output	I _{F(ON)}	4.5	ı	10	mA
Input voltage logic HIGH output	V _{F(OFF)}	0	ı	0.8	V
Supply Voltage	VCC	4.5	5	5.5	V
Operating Temperature (Note 1)	T _{opr}	-40		125	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Note 1: Denotes the operating range, not the recommended operating condition.

Electrical Characteristics (Note) (Unless otherwise specified, Ta = -40 to 125°C, V_{CC} =4.5 to 5.5V)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit	
Converd voltage	\/=	I _F = 10 mA, Ta=25 °C	1.45	1.57	1.75	V	
Forward voltage	VF	I _F = 10 mA	1.35		1.90	V	
Reverse current	I _R	V _R = 5 V, Ta = 25 °C	_	_	10	μΑ	
Capacitance between terminals	Ст	V _F = 0 V, f = 1 MHz, Ta = 25 °C	_	45	_	pF	
Low level output voltage	VoL	I _F = 4 mA, I _O = 4 mA	_	0.3	0.6	V	
High level output voltage	Voh	I _F = 0 mA, I _O = -4 mA, V _{CC} = 5 V	4.0	_	_	V	
Input current logic LOW output	I _{FHL}	I _O = 4 mA, V _O < 0.6 V	_	_	4.0	mA	
High level supply current	Іссн	I _F = 0 mA	_	1.0	1.5	mA	
Low level supply current	ICCL	I _F = 4 mA	_	1.1	1.7	mA	

Note: All typical values at $V_{CC} = 5 \text{ V}$ and $Ta = 25^{\circ}\text{C}$.

Isolation Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Conditions	Min	Тур.	Max	Unit
Capacitance input to output	Cs	V = 0 V, f = 1 MHz	_	0.5	_	pF
Isolation resistance	Rs	R.H. ≤ 60%, V _S = 500 V	5×10 ¹⁰	10 ¹⁴	_	Ω
Isolation voltage	BVs	AC,60 s	3750		_	V _{rms}

Note . This device is considered as two-terminal device: Pins 1 and 3 are shorted together, and pins 4, 5 and 6 are shorted together.

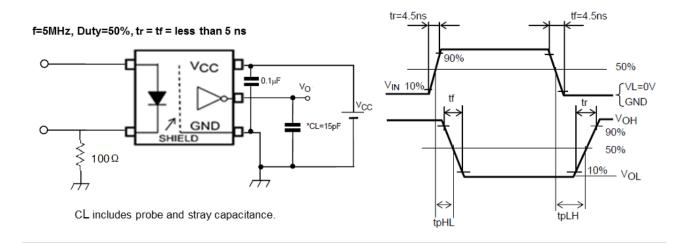
Switching Characteristics (Note) (Unless otherwise specified, Ta = -40 to 125°C, VCC=5V)

Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Propagation delay time (H→L)	tpHL			_	_	35	
Propagation delay time (L→H)	t _{pLH}			_	-	35	
Propagation Delay Skew (Note 2)	t _{psk}		Vin = 4.5 $-$ 5.5V, Rin = 390 Ω.	-15	-	15	
Switching Time Dispersion between ON and OFF	t _{pHL} -t _{pLH}	1	Cin = 100 pF, CL = 15 pF (Note 1)		-	12	ns
Fall Time (90 – 10 %)	tf			_	2	_	
Rise Time (10 – 90 %)	tr			_	2	_	
Common mode transient immunity at high output level (Note 3)	СМН	3	$V_{CM} = 1000 \text{ Vp-p}$, Rin = 390 Ω , Cin = 100 pF, $V_{O}(\text{min}) = 4.0 \text{ V}$, Ta=25 °C	15000	_	_	V/μs
Common mode transient Immunity at low output level (Note 4)	CML	3	VCM=1000Vp-p , Rin = 390 Ω , Cin = 100 pF,, V _O (max)= 0.4 V, Ta=25 °C	-15000	_	_	V/μs

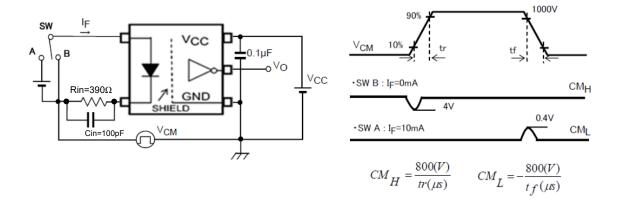
Characteristic	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Propagation delay time (H→L)	tpHL		IF = 7.5 mA,	_	_	80	
Propagation delay time (L→H)	t _{pLH}			_	_	80	
Propagation Delay Skew (Note 2)	t _{psk}			-30	-	30	
Switching Time Dispersion between ON and OFF	t _{pHL} -t _{pLH}	2	CL = 15 pF, V _{DD} = 5V (Note 1)		-	25	ns
Fall Time (90 – 10 %)	tf			_	2	_	
Rise Time (10 – 90 %)	tr			_	2	_	
Common mode transient immunity at high output level (Note 3)	СМн	4	V _{CM} =1000 V _P -p , I _F = 0 mA, V _O (min)= 4.0 V , Ta=25 °C	15000	-	_	V/μs
Common mode transient Immunity at low output level (Note 4)	CML	4	VCM=1000 Vp-p , IF = 7.5 mA, V _O (max)= 0.4 V , Ta = 25 °C	-15000	-	-	V/μs

Note: All typical values are at V_{CC} = 5 V and Ta = 25°C.

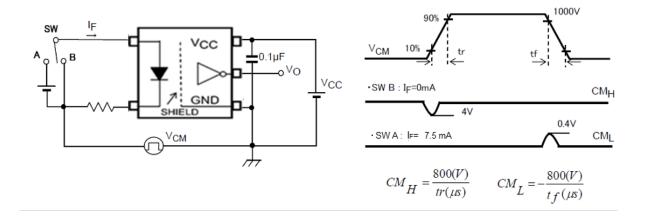
Note: A ceramic capacitor $(0.1 \ \mu F)$ should be connected from pin 6 (V_{CC}) to pin 4 (GND) to stabilize the operation of the high gain linear amplifier. Failure to provide the bypass may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

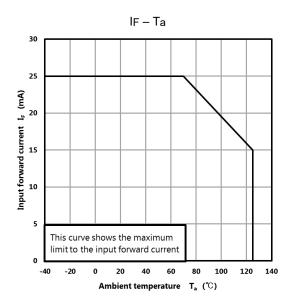

- Note 1: C_L is less than 15pF which includes probe and Jig/stray wiring capacitance.
- Note 2: Propagation delay skew is defined as the difference between the largest and smallest propagation delay times (i.e. tpHL or tpLH) of multiple samples. Evaluations of these samples are conducted under identical test conditions (supply voltage, input current, temperature, etc).
- Note 3: CM_H is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($V_O > 4.0 \text{ V}$)
- Note 4: CM_L is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_0 < 0.4 \text{ V}$).

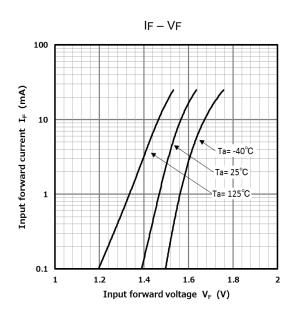
Test Circuit 1: tpHL, tpLH, |tpHL-tpLH|

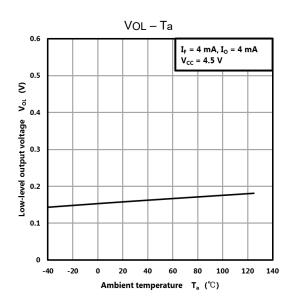


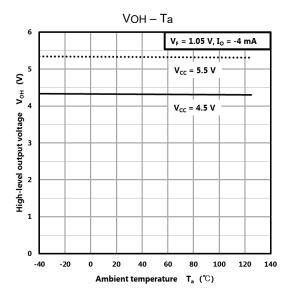
Test Circuit 2: tpHL, tpLH, |tpHL-tpLH|

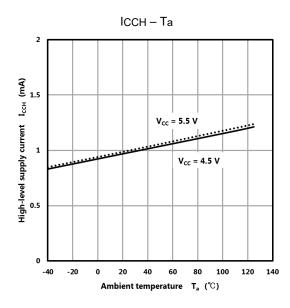


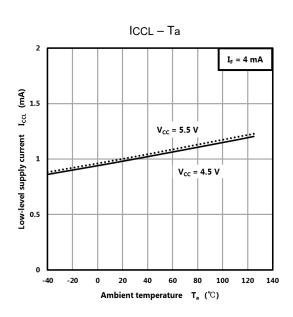

Test Circuit 3: CMH, CML

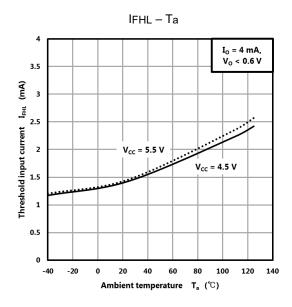


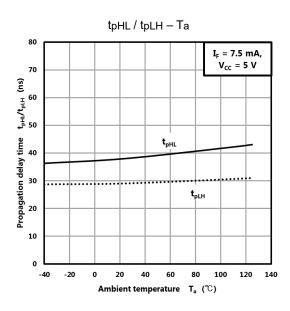

Test Circuit 4: CMH, CML

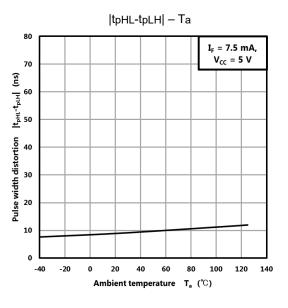


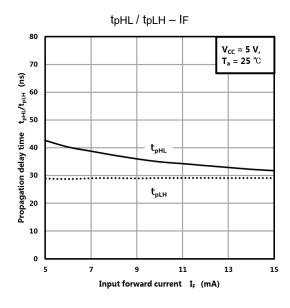

Characteristics Curves (Note)

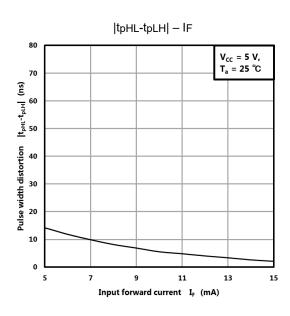


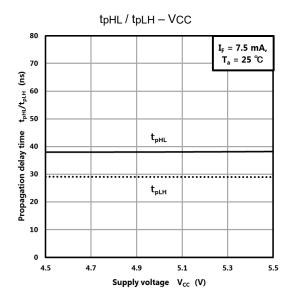


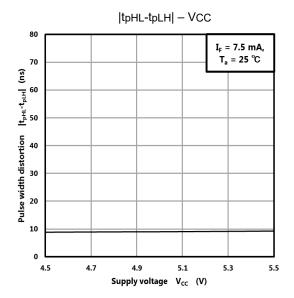












Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical
 equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to
 control combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative or contact us via our website.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor. Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of
 Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled
 substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Output Opto-couplers category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below:

CPC1590P TLP705A(F) TLP700A(F) FOD3150 VO3120-X001 ACPL-W343-560E ACPL-W340-560E H11L2S(TA)-V ACPL-P347-500E

ACPL-P347-560E ACNT-H343-500E H11L1S(TA) H11L3SR2M HCPL-0302-000E HCPL3700SD TLP155E(TPL,E) TLP2345(E(T

TLP2348(E(T TLP350H(F) TLP701AF(F) FOD8333 TLP351H(F) TLP5214(TP,E(O TLP5702(TP,E TLP351H(TP1,F) FOD3120SDV

FOD8160 FOD3184TSR2V 6N140A#300 6N140A/883B HCPL-0466-500E HCPL-6750 TLP700AF(F) TLP152(TPL,E HCPL-5730

OPIA804DTUE 8302401EA H11L1 HCPL-3700 TLP251(F) TLP250(F) VO3150A-X017T TLP5214A(D4-TP,E ACPL-P314-000E

FOD8333R2 ACNW3190-300E ACPL-32JT-500E ACPL-3130-000E ACPL-331J-500E ACPL-332J-500E