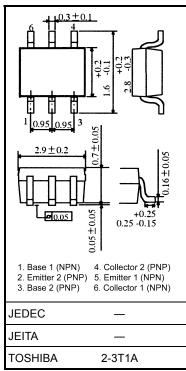
TOSHIBA Multi-Chip Transistor Silicon NPN & PNP Epitaxial Type

TPC6901

High-Speed Switching Applications MOS Gate Drive Applications

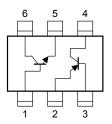

- NPN and PNP transistors are mounted on a compact and slim package.
- High DC current gain: NPN hFE = 400 to 1000 : PNP hFE = 200 to 500
- Low collector-emitter saturation voltage
 - : NPN VCE (sat) = 0.17 V (max) : PNP VCE (sat) = 0.23 V (max)
- High-speed switching: NPN tf = 85 ns (typ.) : PNP tf = 70 ns (typ.)

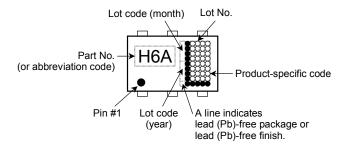
	-	-				
Characteristics		Symbol	Rating		Unit	
		Symbol	NPN	PNP	Unit	
Collector-base voltage		V _{CBO}	100	-50	V	
Collector-emitter voltage		V _{CEX}	80	-50	V	
Collector-emitter voltage		V _{CEO}	50	-50	V	
Emitter-base voltage		V _{EBO}	7	-7	V	
Collector current	DC (Note 1)	IC	1.0	0.7	А	
	Pulse (Note 1)	I _{CP}	2.0	-2.0	А	
Base current		Ι _Β	0.1	-0.1	А	
Collector power dissipation (t=10 s) (Note 2)	Single-device operation	P _C (1)	500		mW	
Collector power dissipation (DC) (Note 2)	Single-device operation	P _C (2)	400			
	Single-device value at dual operation	P _C (3)	330		mW	
Thermal resistance, junction to ambient (t=10 s) (Note 2)	Single-device operation	R _{th (j-a)} (1)	250		°C/W	
Thermal resistance, junction to ambient (DC) (Note 2)	Single-device operation	R _{th (j-a)} (2)	312		°C/W	
	Single-device value at dual operation	R _{th (j-a)} (3)	378			
Junction temperature		Тј	150		°C	
Storage temperature range		T _{stg}	-55 to 150		°C	

Maximum Ratings (Ta = 25°C)

Note 1: Ensure that the channel temperature does not exceed 150°C.

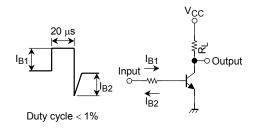
Note 2: Mounted on an FR4 board (glass epoxy, 1.6 mm thick, Cu area: 645 mm²)



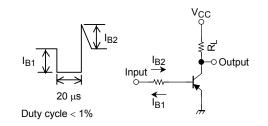

Weight: 0.011 g (typ.)

Unit: mm

Circuit Configuration

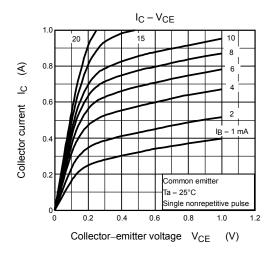


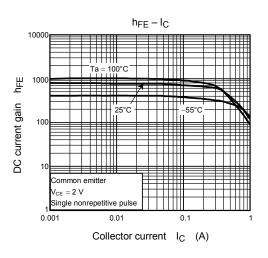
Electrical Characteristics (Ta = 25°C) : NPN

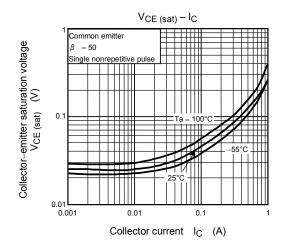

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current		I _{CBO}	$V_{CB} = 100 \text{ V}, \text{ I}_{E} = 0$	_		100	nA
Emitter cut-off current		I _{EBO}	$V_{EB}=7~V,~I_C=0$	_	_	100	nA
Collector-emitter brea	akdown voltage	V (BR) CEO	$I_C=10\ mA,\ I_B=0$	50	_		V
DC current gain		h _{FE} (1)	$V_{CE} = 2 V, I_C = 0.1 A$	400	_	1000	
		h _{FE} (2)	$V_{CE} = 2 V, I_C = 0.3 A$	200	_		
Collector-emitter saturation voltage		V _{CE (sat)}	$I_C = 300 \text{ mA}, I_B = 6 \text{ mA}$	-	_	0.17	V
Base-emitter saturation voltage		V _{BE (sat)}	$I_{C} = 300 \text{ mA}, I_{B} = 6 \text{ mA}$		_	1.10	V
Collector output capacitance		C _{ob}	$V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1 \text{ MHz}$	-	5		pF
Switching time	Rise time	t _r	See Figure 1 circuit diagram.	_	35	_	
	Storage time	t _{stg}	V _{CC} ≈ 30 V, R _L = 100 Ω		680	_	ns
	Fall time	t _f	$I_{B1} = -I_{B2} = 10 \text{ mA}$		85		

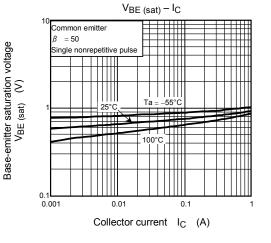
Electrical Characteristics (Ta = 25°C) : PNP

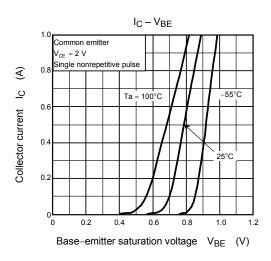
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current		I _{CBO}	$V_{CB} = -50 \text{ V}, \text{ I}_{E} = 0$	_		-100	nA
Emitter cut-off current		I _{EBO}	$V_{EB}=-7~V,~I_C=0$	_	_	-100	nA
Collector-emitter brea	akdown voltage	V (BR) CEO	$I_{C} = -10 \text{ mA}, I_{B} = 0$	-50	_	_	V
DC current gain		h _{FE} (1)	$V_{CE} = -2 \text{ V}, \text{ I}_{C} = -0.1 \text{ A}$	200	_	500	
		h _{FE} (2)	$V_{CE} = -2 \text{ V}, \text{ I}_{C} = -0.3 \text{ A}$	125			
Collector-emitter saturation voltage		V _{CE (sat)}	$I_{C} = -300 \text{ mA}, I_{B} = -10 \text{ mA}$			0.23	V
Base-emitter saturation voltage		V _{BE (sat)}	$I_{C} = -300 \text{ mA}, I_{B} = -10 \text{ mA}$	_	_	1.10	V
Collector output capacitance		C _{ob}	$V_{CB} = -10 \text{ V}, I_E = 0, f = 1 \text{ MHz}$		8		pF
Switching time	Rise time	t _r	See Figure 2 circuit diagram.		60		
	Storage time	t _{stg}	V _{CC} ≈ 30 V, R _L = 100 Ω	_	280	_	ns
	Fall time	t _f	$I_{B1} = -I_{B2} = -10 \text{ mA}$	_	70	_	

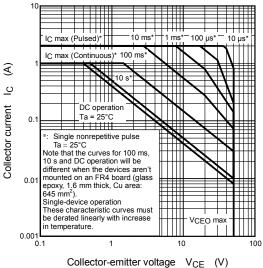


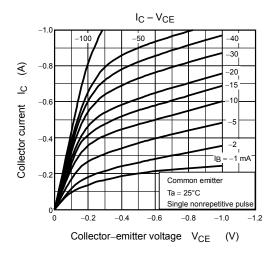


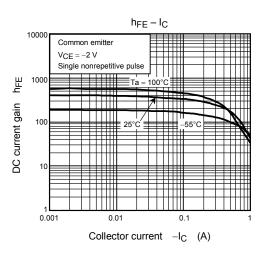


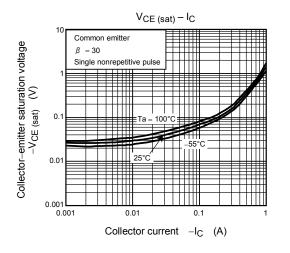

Figure 2 Switching Time Test Circuit & Timing Chart (PNP)

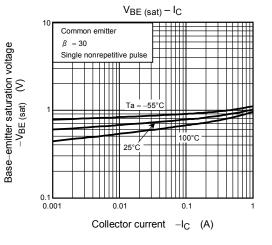

NPN

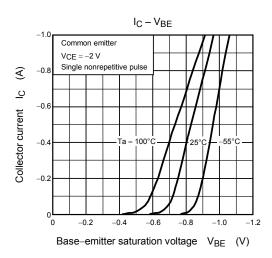


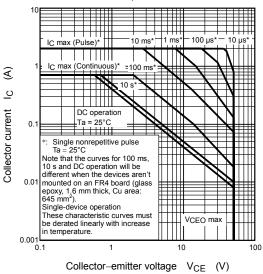


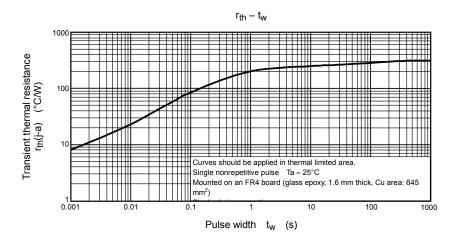


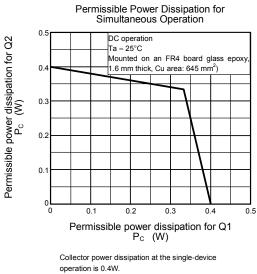





PNP







Common

Collector power dissipation at the single-device value at dual operation is 0.33W.

Collector power dissipation at the dual operation is set to 0.66W.

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
- In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Toshiba manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15