transpherm

TDHBG2500P100: 2.5kW Half-bridge Evaluation Board

Introduction

The TDHBG2500P100 half-bridge evaluation board provides the elements of a simple buck or boost converter for basic study of switching characteristics and efficiency achievable with Transphorm's 650V GaN FETs. In either buck or boost mode the circuit can be configured for synchronous rectification. Jumpers allow use of a single logic input or separate hi/lo inputs. The highvoltage input and output can operate at up to 400 Vdc , with a power output of up to 2.5 kW . The inductor provided is intended for efficient operation at 100 kHz , although other inductors and other frequencies may be easily used.

The TDHBG2500P100-KIT is for evaluation purposes only.

Figure 1. TDHBG2500P100 half-bridge evaluation board

Warnings

TDHGB2500P100 input/output specifications

High-voltage input/output: 400Vdc max

Auxiliary supply (J1): 10V min, 18V max
Logic inputs: nominal OV-5V
Pulse-generation circuit: Vlo < 1.5V, Vhi > 3.0V
Direct connection to gate driver: Vlo $<0.8 \mathrm{~V}, \mathrm{Vhi}>2.0 \mathrm{~V}$
SMA coaxial connectors
Switching frequency: configuration-dependent
Lower limit determined by peak inductor current
Upper limit determined by desired dead-time and power dissipation
Power dissipation in the GaN FET is limited by the maximum junction temperature. Refer to the TPH3212PS datasheet.

Circuit description

The circuit comprises a simple half-bridge featuring two TPH3212PS GaN FETs, as indicated in the block diagram of Figure 2. Two high-voltage ports are provided which can serve as either input or output, depending on the configuration-boost or buck. In either case one FET acts as the active power switch while the other carries the freewheeling current. The latter device may be enhanced, as a synchronous rectifier, or not. With GaN FETs the reverse recovery charge is low and there is no need for additional freewheeling diodes. Two input connectors are provided which can be connected to sources of logic-level command signals for the hi/lo gate driver. Both inputs may be driven by off-board signal sources; or alternatively, a single signal source may be connected to an on-board pulse-generator circuit which generates the two non-overlapping pulses. Jumpers determine how the input signals are used.

An inductor is provided as a starting point for investigation. This is a $440 \mu \mathrm{H}$ toroid intended to demonstrate a reasonable compromise between size and efficiency for power up to 2.5 kW at a switching frequency of 100 kHz .

Figure 2. Functional block diagram

Using the board

The board can be used for evaluation of basic switching functionality in a variety of circuit configurations. It is not a complete circuit, but rather a building block. It can be used in steady-state DC/DC converter mode with output power up to 2.5 kW .

When operating the board at high power (>1000W), an external fan should be used to cool the heatsink.

Configurations

Figure 3 shows the basic power connections for buck and boost modes. For buck mode, the HVdc input (terminals J2, J3) is connected to the high-voltage supply and the output is taken from terminals J 5 and J 7 . For boost mode, the connections are reversed.

Note that in boost mode a load must be connected. The load current affects the output voltage up to the transition from DCM to CCM. In buck mode the load may be an open circuit.

Figure 3. Supply and load connections for buck (a) and boost (b) configurations
Figure 4 shows possible configurations for the gate-drive signals. In Figure 4(a), a single input from an external signal source is used together with the on-board pulse generation circuit. J4 is used, J6 is left open circuit. Jumpers JP1 and JP2 are in the top position, as shown. If the high-side transistor is to be the active switch (e.g. buck mode), then the duty cycle of the input source should simply be set to the desired duty cycle (D). If the low-side transistor is to be the active switch (e.g. boost mode) the duty cycle of the input source should be set to (1-D), where D is the desired duty cycle of the low-side switch. This configuration results in synchronous rectification. If it is desired to let the device carrying the freewheeling current act as a diode, then the appropriate jumper should be placed so that the pull-down resistor is connected to the driver. Figure 4(b) shows a buck-mode
configuration where the low-side device is not enhanced. Finally, Figure 4(c) shows use of two external signal sources as inputs to the gate driver.

For any configuration, an auxiliary supply voltage of $10 \mathrm{~V}-18 \mathrm{~V}$ must be supplied at connector J1.
Pull-down resistors R5 and R6 have a value of 4.99k. If a 50Ω signal source is used and 50Ω termination is desired, then R5 and R6 may be replaced (or paralleled) with 1206 size 50Ω resistors.

Boost mode/buck mode operation

For buck mode operation, with input voltage of 400 V and output voltage of 48 V ; 50A max output current is achievable at 2500 W with duty cycle of 12%. A typical $400 \mathrm{Vin}-200$ Vout buck operation with 50% duty cycle, 6.5 A max output current is seen at 2500 W . On the other hand, for $200 \mathrm{Vin}-400 \mathrm{Vout}$ boost mode operation at $2.5 \mathrm{~kW}, 12.5 \mathrm{~A}$ max output current can be reached with a duty cycle of 50%. Thermal cooling must be enforced for high current switching at all times.

(a)

(b)

Figure 4. Input configurations
(a) using a single source for either buck or boost mode
(b) buck mode without synchronous rectification
(c) using two signal sources

Dead time control

The required form of the gate-drive signals is shown in Figure 5. The times marked A are the dead times when neither transistor is driven on. The dead time must be greater than zero to avoid shoot-through currents. The Si8230BB gate drive chip ensures a minimum dead time based on the value of resistor R7, connected to the DT input. The dead time in ns is equal to the resistance in $k \Omega \times 10$, so the default value of 12 k corresponds to 120 ns . This will add to any dead time already present in the input signals. The on-board pulse generator circuit; for example, creates dead times of about 60ns. The resulting dead time at the gate pins of Q1 and Q2 is about 240ns. Either shorting or removing R7 will reduce the dead time to 60 ns .

Figure 5. Non-overlapping gate pulses

Design details

See Figure 6 for a detailed circuit schematic and Figure 7 for the PCB layers (also included in the design files). The parts list can be found in Table 1.

Table 1. TDHBG2500P100 half-bridge evaluation board bill of materials (BOM)

Designator	Qty	Value	Descriptlon	Package	Part Number	Manufacturer
U3	1		74LVC1G17DBV	SOT23-5	SN74LVC1G17DBVR	Texas Instruments
D1, D4, D5	3		DIODE-DO-214AC	DO-214AC	ES1J	Fairchild
FB1, FB2	2	300Ω	FBO603	603	MMZ1608S301ATA00	TDK
FB3, FB4, FB5, FB6	2	30Ω	805	BLM21SN300SZ1D	Murata	
JP1, JP2	2		JP2E	JP2	$68001-403 H L F$	FCI

TDHBG2500P100 User Guide

Designator	Qty	Value	Description	Package	Part Number	Manufacturer
$\begin{aligned} & \mathrm{J} 2, \mathrm{~J} 3, \mathrm{~J}, \\ & \mathrm{~J} 7 \end{aligned}$	4		KEYSTONE_7691	KEYSTONE_7691	7691	Keystone
LED1, LED2, LED3	3		LEDCHIP-LED0805	CHIP-LED0805	SML-211UTT86	Rohm
U1	1		LT3082	SOT223-3	LT3082EST\#PBF	Linear Technology
J1	1		PJ-002AH	PJ-002AH	PJ-002AH	CUI
LDS, LGS	2		TEKTRONIX-PCB	TEKTRONIX-PCB	131-4353-00	Tektronix
C7	1	$0.1 \mu \mathrm{~F}$	C-EUC1812	C1812	C1812V104KDRACTU	Kemet
$\begin{aligned} & \text { C10, C11, } \\ & \text { C12, C14, } \\ & \text { C20, C21, } \\ & \text { C22 } \end{aligned}$	7	$0.1 \mu \mathrm{~F}$	C-USC0603	C0603	06033C104JAT2A	AVX
$\begin{aligned} & \text { C8, C16, } \\ & \text { C17 } \end{aligned}$	3	$0.1 \mu \mathrm{~F}$	C-USC2225K	C2225K	VJ2225Y104KXGAT	Vishay
R15	1	0Ω	R-US_R0603	R0603	RC0603FR-070RL	Yageo
R16, R23	2	20Ω	R-US_R1206	R1206	RNCP1206FTD20R0	Stackpole
R9, R12	2	0Ω	R-US_R1206	R1206	ERJ-8GEYOROOV	Panasonic
R4	1	10Ω	R-US_R0805	R0805	ERJ-P06J100V	Panasonic
R14	1	100k 2	R-US_R0603	R0603	ESR03EZPJ104	Rohm
C19, C23	2	100pF	C-USC0603	C0603	06035A101FAT2A	AVX
R3	1	$10 \mathrm{M} \Omega$	R-US_R1206	R1206	HVC1206T1005JET	Stackpole
R7, R11	2	$10 \mathrm{k} \Omega$	R-US_R0603	R0603	ERJ-3GEYJ103V	Panasonic
C13, C15	2	10رF	C-EUC0805	C0805	C0805C106M4PACTU	Kemet
R8, R10	2	$1 \mathrm{k} \Omega$	R-US_R0603	R0603	RC0603FR-071KL	Yageo
C2	1	$1 \mu \mathrm{~F}$	C-EUC0805	C0805	CC0805ZRY5V8BB105	Yageo
C3	1	$2.2 \mu \mathrm{~F}$	C-EUC0805	C0805	C2012X5R1E225K125AC	TDK
C1	1	$22 \mu \mathrm{~F}$	C-USC1206	C1206	CL31A226MOCLNNC	Samsung
R13	1	2kS	R-US_R0805	R0805	RC0805FR-072KL	Yageo
$\begin{aligned} & \text { C4, C5, C6, } \\ & \text { C24 } \end{aligned}$	4	4.7 nF	C-EUC1206	C1206	C1206C472KDRACTU	Kemet
R1, R5, R6	6	$4.99 \mathrm{k} \Omega$	R-US_R1206	R1206	RMCF1206FT4K99	Stackpole
$\begin{aligned} & \text { R17, R18, } \\ & \text { R19, R20, } \\ & \text { R21, R22 } \end{aligned}$	6	560k Ω	R-US_R0805	R0805	ESR10EZPJ564	Rohm
R2	1	499k	R-US_R1206	R1206	RMCF1206FT499K	Stackpole
C9, C18	2	$10 \mu \mathrm{H}$	10uH	EPCOS_B32674	B32794D2106K	Epcos
U4, U5	2		74AHC1G86DBV	SOT23-5	SN74AHC1G86DBVR	Texas Instruments
D2, D3	2		BAT54	SOT23	BAT54W	NXP
J4, J6	2		BU-SMA-G	BU-SMA-G	5-1814832-1	TE Connectivity
U\$3	1	$460 \mu \mathrm{H}$	Inductor		CWS-1MP-12640	CWS
HS1	1		$\begin{aligned} & \text { HEATSINKC220-050- } \\ & 2 \text { AE } \end{aligned}$		C220-050-2AE	Ohmite
U2	1		SI8230	SOIC16N	SI8230BB-D-IS	SiLabs
Q1, Q2	2	$72 \mathrm{~m} \Omega$	TPH_TO220VERT_TRI	TO-220	TPH3212PS	Transphorm
	2		Thermal pad between TPH3212 and heatsink		SP2000-0.015-00-54	Bergquist
	2		4-40 screw		9900	Keystone
	2		Nylon washer shoulder		3049	Keystone
	1	12V	Adaptor		TRG10R120-11E03-Level-VI	Cincon
	4		Bumper cylin 0.312" dia blk		SJ61A1	3M

Figure 6. Detailed circuit schematic

(a) PCB top layer

(b) PCB bottom layer

(c) PCB inner layer 2 (ground plane) + inner layer 3 (power plane)

Figure 7. PCB layers

Probing

Plated through-holes labeled test points (LGS and LDS) are provided for probing the low-side gate pulse and half-bridge switching node waveform. In order to minimize inductance during measurement, the tip and the ground of the probe should be directly attached to the sensing points to minimize the sensing loop. For safe, reliable and accurate measurement, a scope probe tip may be directly soldered to the low-side FET drain and a short ground wire soldered to the low-side FET source. See Figure 8 for an alternative that does not require soldering the probe tip.

WARNINGS:

There is no specific protection against over-current or over-voltage on this board.
If the on-board pulse generation circuit is used in boost mode, a zero input corresponds to 100% duty cycle for the active lowside switch.

Figure 8. Low-inductance probing of fast, high-voltage signals
Efficiency has been measured for this circuit in boost mode with 200Vdc in and 400Vdc out, switching at 50kHz and 100kHz (Figure 9).

Figure 9. Efficiency for a boost 200V:400V converter

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Transphorm manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

