transpherm

650V Cascode GaN FET in TO-247 (source tab)

Description

The TP65H050WS 650V, $50 \mathrm{~m} \Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies-offering superior reliability and performance.

Transphorm GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature

- ANOOO9: Recommended External Circuitry for GaN FETs
- ANOOO3: Printed Circuit Board Layout and Probing
- AN0010: Paralleling GaN FETs

Ordering Information

Part Number	Package	Package Configuration
TP65H050WS	3 Lead TO-247	Source

Features

- JEDEC qualified GaN technology
- Dynamic $R_{D S(o n) \text { eff }}$ production tested
- Robust design, defined by
- Intrinsic lifetime tests
- Wide gate safety margin
- Transient over-voltage capability
- Very low Qrr
- Reduced crossover loss
- RoHS compliant and Halogen-free packaging

Benefits

- Improves efficiency/operation frequencies over Si
- Enables AC-DC bridgeless totem-pole PFC designs
- Increased power density
- Reduced system size and weight
- Overall lower system cost
- Easy to drive with commonly-used gate drivers
- GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
- Servo motor

Key Specifications

$\mathrm{V}_{\mathrm{DSS}}(\mathrm{V})$	650
$\mathrm{~V}_{\text {(TR) } \mathrm{DSS}}(\mathrm{V})$	800
$\mathrm{R}_{\mathrm{DS} \text { (on)eff }}(\mathrm{m} \Omega$) max*	60
$\mathrm{Q}_{R R}(\mathrm{nC})$ typ	125
$\mathrm{Q}_{\mathrm{G}}(\mathrm{nC})$ typ	16

* Dynamic on-resistance; see Figures 17 and 18

Common Topology Power Recommendations

CCM bridgeless totem-pole*	3080W max
Hard-switched inverter**	3670W max

Conditions: $\mathrm{F}_{\mathrm{sw}}=45 \mathrm{kHz} ; \mathrm{T}_{\mathrm{J}}=115^{\circ} \mathrm{C}$; $\mathrm{T}_{\text {heatsink }}=90^{\circ} \mathrm{C}$; insulator between device and heatsink (6 mil Sil-Pad $®$ K-10); power de-rates at lower voltages with constant current

$$
\begin{array}{ll}
* & \mathrm{~V}_{I N}=230 \mathrm{~V}_{A C} ; \mathrm{V}_{\text {OUT }}=390 \mathrm{~V}_{\mathrm{DC}} \\
* * & \mathrm{~V}_{I N}=380 \mathrm{~V}_{\mathrm{DC}} ; \mathrm{V}_{\text {OUT }}=240 \mathrm{~V}_{\mathrm{AC}}
\end{array}
$$

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit
$V_{\text {DSS }}$	Drain to source voltage ($\mathrm{T}_{J}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$)		650	
$\mathrm{V}_{\text {(TR) }{ }^{\text {dSS }}}$	Transient drain to source voltage a		800	V
$V_{\text {GSS }}$	Gate to source voltage		± 20	
PD	Maximum power dissipation @ $\mathrm{C}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		119	W
	Continuous drain current @ $\mathrm{C}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ b		36	A
	Continuous drain current @ $\mathrm{T}=100^{\circ} \mathrm{C}$ b		25	A
IDM	Pulsed drain current (pulse width: $10 \mu \mathrm{~s}$)		150	A
(di/dt) RDMC	Reverse diode di/dt, repetitive ${ }^{\text {c }}$		1600	A/ $\mu \mathrm{s}$
(di/dt) RDMT	Reverse diode di/dt, transient ${ }^{\text {d }}$		3000	A/ $\mu \mathrm{s}$
Tc	Operating temperature	Case	-55 to +150	${ }^{\circ} \mathrm{C}$
TJ		Junction	-55 to +150	${ }^{\circ} \mathrm{C}$
Ts	Storage temperature		-55 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOLD }}$	Soldering peak temperature e		260	${ }^{\circ} \mathrm{C}$
-	Mounting Torque		80	N cm

Notes:

a. In off-state, spike duty cycle $\mathrm{D}<0.01$, spike duration $<1 \mu \mathrm{~s}$
b. For increased stability at high current operation, see Circuit Implementation on page 3
c. Continuous switching operation
d. ≤ 300 pulses per second for a total duration ≤ 20 minutes
e. For $10 \mathrm{sec} ., 1.6 \mathrm{~mm}$ from the case

Thermal Resistance

Symbol	Parameter	Maximum	Unit
$R_{\text {өנс }}$	Junction-to-case	1.05	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {बJA }}$	Junction-to-ambient	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

TP65H050WS

Circuit Implementation

Simplified Half-bridge Schematic

Efficiency vs Output Power

Recommended gate drive: $(0 \mathrm{~V}, 12 \mathrm{~V})$ with $\mathrm{R}_{\mathrm{G}}=30-45 \Omega$

Required DC Link RC Snubber (RC $\mathbf{D C L}$) a	Recommended Switching Node RC Snubber (RC $\mathbf{s N}$) $\mathbf{b , c}$
$[10 \mathrm{nF}+8 \Omega] \times 2$	$100 \mathrm{pF}+10 \Omega$

Notes:
a. $\quad R C_{D C L}$ should be placed as close as possible to the drain pin
b. A switching node RC snubber (C, R) is recommended for high switching currents ($>70 \%$ of $I_{\text {RDMC1 }}$ or $I_{\text {RDMC2 }}$; see page 5 for $I_{R D M C 1}$ and $I_{R D M C 2}$)
c. $\quad I_{\text {RDM }}$ values can be increased by increasing R_{G} and $C_{S N}$

Electrical Parameters ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
Forward Device Characteristics						
$V_{\text {(BL)DSS }}$	Drain-source voltage	650	-	-	V	$V_{G S}=0 \mathrm{~V}$
$\mathrm{VGS}_{\mathrm{GS}}(\mathrm{th})$	Gate threshold voltage	3.3	4	4.8	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=0.7 \mathrm{~mA}$
$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})} / \mathrm{T}_{\mathrm{J}}$	Gate threshold voltage temperature coefficient	-	-6.2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {DS(on) } \mathrm{eff}}$	Drain-source on-resistance ${ }^{\text {a }}$	-	50	60	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=22 \mathrm{~A}$
		-	103	-		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=22 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
IDSS	Drain-to-source leakage current	-	2.5	25	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=650 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		-	10	-		$\mathrm{V}_{\mathrm{DS}}=650 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$
$I_{\text {GSS }}$	Gate-to-source forward leakage current	-	-	100	nA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
		-	-	-100		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$
CIss	Input capacitance	-	1000	-	pF	$V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=400 \mathrm{~V}, f=1 \mathrm{MHz}$
Coss	Output capacitance	-	130	-		
Crss	Reverse transfer capacitance	-	8	-		
$\mathrm{C}_{\text {o(er) }}$	Output capacitance, energy related ${ }^{\text {b }}$	-	190	-	pF	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 400V
$\mathrm{C}_{\text {(tr) }}$	Output capacitance, time related ${ }^{\text {c }}$	-	310	-		
Q_{G}	Total gate charge	-	16	24	$n C$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=22 \mathrm{~A} \end{aligned}$
Qgs	Gate-source charge	-	6	-		
QGd	Gate-drain charge	-	5	-		
Qoss	Output charge	-	124	-	nC	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 400V
$t_{\text {D(on) }}$	Turn-on delay	-	51	-	ns	$\begin{aligned} & V_{D S}=400 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \text { to } 12 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=22 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=40 \Omega \end{aligned}$
t_{R}	Rise time	-	11	-		
$t_{\text {(off) }}$	Turn-off delay	-	86	-		
t_{F}	Fall time	-	11	-		

Notes:

a. Dynamic on-resistance; see Figures 17 and 18 for test circuit and conditions
b. Equivalent capacitance to give same stored energy as $V_{D S}$ rises from $0 V$ to 400 V
c. Equivalent capacitance to give same charging time as $V_{D S}$ rises from OV to 400V

TP65H050WS

Electrical Parameters $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated)

Symbol	Parameter	Min	Typ	Max	Unit	Test Conditions
Reverse Device Characteristics						
Is	Reverse current	-	-	22	A	$V_{G S}=0 V, T_{C}=100^{\circ} \mathrm{C},$ $\leq 20 \%$ duty cycle
V SD	Reverse voltage ${ }^{\text {a }}$	-	1.8	2.3	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{IS}=22 \mathrm{~A}$
		-	1.3	1.7		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=11 \mathrm{~A}$
$\mathrm{t}_{\text {RR }}$	Reverse recovery time	-	54	-	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=22 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=400 \mathrm{~V}, \\ & \mathrm{di} / \mathrm{dt}=1000 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
QRR	Reverse recovery charge	-	125	-	nC	
(di/dt) RDMC $^{\text {R }}$	Reverse diode di/dt, repetitive ${ }^{\text {b }}$	-	-	1600	A/ $\mu \mathrm{s}$	
Irdmc1	Reverse diode switching current, repetitive (dc) c, e	-	-	24	A	Circuit implementation and parameters on page 3
IRDMC2	Reverse diode switching current, repetitive (ac) c, e	-	-	28	A	Circuit implementation and parameters on page 3
(di/dt) RDMT $^{\text {rem }}$	Reverse diode di/dt, transient d	-	-	3000	A/ $\mu \mathrm{S}$	
IRdmt	Reverse diode switching current, transient d,e	-	-	36	A	Circuit implementation and parameters on page 3

Notes:

a. Includes dynamic Rds(on) effect
b. Continuous switching operation
c. Definitions: $\mathrm{dc}=\mathrm{dc}$-to-dc converter topologies; ac = inverter and PFC topologies, $50-60 \mathrm{~Hz}$ line frequency
d. ≤ 300 pulses per second for a total duration ≤ 20 minutes
e. $\quad I_{R D M}$ values can be increased by increasing R_{G} and $C_{S N}$ on page 3

TP65H050WS

Typical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Figure 1. Typical Output Characteristics $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Parameter: V_{GS}

Figure 3. Typical Transfer Characteristics
$V_{D S}=10 \mathrm{~V}$, parameter: T_{J}

Figure 2. Typical Output Characteristics $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$ Parameter: V_{GS}

Figure 4. Normalized On-resistance
$I_{D}=22 \mathrm{~A}, V_{G S}=10 \mathrm{~V}$

TP65H050WS

Typical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Figure 5. Typical Capacitance
$V_{G S}=0 V, f=1 M H z$

Figure 7. Typical Qoss

Figure 6. Typical Coss Stored Energy

Figure 8. Forward Characteristics of Rev. Diode
$I_{S}=f\left(V_{S D}\right)$, parameter: T_{J}

TP65H050WS

Typical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Figure 9. Power Dissipation

Figure 11. Safe Operating Area $\mathrm{T}=25^{\circ} \mathrm{C}$

Figure 10. Current Derating
Pulse width $\leq 10 \mu \mathrm{~s}$, $\mathrm{V}_{\mathrm{GS}} \geq 10 \mathrm{~V}$

Figure 12. Transient Thermal Resistance

Test Circuits and Waveforms

Figure 13. Switching Time Test Circuit
(see circuit implementation on page 3 for methods to ensure clean switching)

Figure 15. Diode Characteristics Test Circuit

Figure 17. Dynamic $\mathbf{R}_{\text {DS(on)eff }}$ Test Circuit

Figure 14. Switching Time Waveform

Figure 16. Diode Recovery Waveform

Figure 18. Dynamic RDS(on)eff Waveform

TP65H050WS

Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note Printed Circuit Board Layout and Probing for GaN Power Switches. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See ANOOO3: Printed Circuit Board Layout and Probing	

GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- Design guides
- Simulation models
- Technical papers and presentations

Mechanical

NOTES:

1. DIMENSIONS D \& E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT
EXCEED 0.127 MM (0.005°) PER SIDE.
THESE DIMENSIONS ARE MEASURED AT
THE OUTERMOST EXTREME OF THE
PLASTIC BODY.
2. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS D1 \& E1.
3. LEAD FINISH UNCONTROLLED IN L1.
4. OUTLINE CONFORMS TO JEDEC TO-247AD.

TO-247 3L			
transphorm			
seake 1:1	${ }^{\text {seter }}$	$1 / 1$	

TP65H050WS

Revision History

Version	Date	Change(s)
0	$12 / 6 / 2017$	Initial
1	$6 / 13 / 2018$	Datasheet completed
2	$12 / 21 / 2018$	1) Add max mounting torque 2) Update maximum continuous current 3) Update Qoss 4) Switching with current test condition

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Transphorm manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D
TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI
DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384
NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956
NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF

