## TRIDONIC

## LED Driver

Compact fixed output

Driver LC 7W 180mA fixC SC ADV2
advanced series

## Product description

- Fixed output LED Driver
- Can be either used build-in or independent with clip-on strain-relief (see accessory)
- Independent LED Driver with cable clamps
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Constant current LED Driver
- Output current 180 mA
- Max. output power 7.6 W
- Nominal lifetime up to 50,000 h
- 5 years guarantee (conditions at www.tridonic.com)


## Housing properties

- Casing: polycarbonat, white
- Type of protection IP20


## Functions

- Overload protection
- Short-circuit protection
- No-load protection


## Typical applications

- For spot light and downlight in retail and hospitality application
- For panel light and area light in office and education application



Standards, page 4
Wiring diagrams and installation examples, page 4

TRIDONIC
 RoHS

LED Driver
Compact fixed output

Driver LC 7W 180mA fixC SC ADV2
advanced series

## Technical data

| Rated supply voltage | 220-240 V |
| :---: | :---: |
| AC voltage range | 198-264 V |
| Mains frequency | $50 / 60 \mathrm{~Hz}$ |
| Overvoltage protection | 320 V AC, 1 h |
| THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | < 15 \% |
| Output current tolerance ${ }^{\text {® }}$ | $\pm 7.5$ \% |
| Typ. output LF current ripple at full load ${ }^{(\Phi)}$ | $\pm 3 \%$ |
| Output $\mathrm{P}_{\text {St }} \mathrm{LM}$ (at full load) | $\leq 1$ |
| Output SVM (at full load) | $\leq 0.4$ |
| Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | $\leq 0.5 \mathrm{~s}$ |
| Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | $\leq 0.5 \mathrm{~s}$ |
| Hold on time at power failure (output) | 0 s |
| Ambient temperature ta | $-20 \ldots+50^{\circ} \mathrm{C}$ |
| Ambient temperature ta (at lifetime 50,000 h) | $50^{\circ} \mathrm{C}$ |
| Storage temperature ts | $-40 \ldots+80^{\circ} \mathrm{C}$ |
| Mains burst capability | 1 kV |
| Mains surge capability (between $L-N$ ) | 1 kV |
| Mains surge capability (between L/N - PE) | 2 kV |
| Surge voltage at output side (against PE) | 3 kV |
| Lifetime | up to 50,000 h |
| Guarantee (conditions at www.tridonic.com) | 5 years |
| Dimensions L $\times$ W $\times \mathrm{H}$ | $70 \times 43 \times 22.5 \mathrm{~mm}$ |



## Ordering data

| Type | Article <br> number | Packaging, <br> carton | Packaging, <br> low volume | Packaging, <br> high volume | Weight per <br> pc. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{L C} \mathbf{7 / 1 8 0 / 4 2 ~ f i x C ~ S C ~ A D V 2 ~}$ | $\mathbf{8 7 5 0 0 9 3 9}$ | $50 \mathrm{pc}(\mathrm{s})$. | $1,300 \mathrm{pc}(\mathrm{s})$. | $7,800 \mathrm{pc}(\mathrm{s})$. | 0.046 kg |

Specific technical data

| Type | Output current ${ }^{(3)}$ | Input current (at 230 V , 50 Hz , full load) | Max. input power | Input power (at 230 V , 50 Hz , full load) | Output <br> power <br> range | $\begin{gathered} \lambda \text { at } \\ \text { full load }{ }^{\oplus} \end{gathered}$ | ```Efficiency at full load ($``` | $\lambda$ at min. <br> load ${ }^{(1)}$ | $\begin{aligned} & \text { Efficiency } \\ & \text { at min. } \\ & \text { load }^{\star} \end{aligned}$ | Min. forward voltage | Max. forward voltage | Max. output voltage | Max. output peak current at full load ${ }^{\text {(2 }}$ | Max. output peak current at min. load ${ }^{(2)}$ | Max. casing temperature tc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LC 7/180/42 fixC SC ADV2 | 180 mA | 40 mA | 9.3 W | 8.8 W | $5.4-7.6 \mathrm{~W}$ | 0.95 | 86 \% | 0.90C | 82 \% | 30 V | 42 V | 60 V | 199 mA | 199 mA | $65^{\circ} \mathrm{C}$ |

[^0]Compact fixed output

## $\sqrt{W} \oplus \square$

Strain-relief set $43 \times 22.5 \mathrm{~mm}$

## Product description

- Optional strain-relief set for independent applications
- Easy and tool-free mounting to the LED driver
- Screwless cable-clamp channels
- Transforms the LED Driver into a fully class II compatible LED Driver (e.g. ceiling installation)
- Overall length $=$ length $L($ LED Driver $)+2 \times 24.5 \mathrm{~mm}$ (strain-relief set)


Permissible cable jacket diameter 2.2-9 mm

Ordering data

| Type | Article <br> number | Packaging <br> carton $^{\oplus}$ | Packaging <br> outer box | Weight per pc. |
| :--- | :--- | :--- | :--- | :--- |
| ACU SC 43 $\times \mathbf{2 2 . 5 m m}$ CLIP-ON SR SET | $\mathbf{2 8 0 0 1 5 3 4}$ | $10 \mathrm{pc}(\mathrm{s})$. | $200 \mathrm{pc}(\mathrm{s})$. | 0.027 kg |

${ }^{(1)}$ A carton of 10 pcs. is equal to 10 sets, each with 2 strain-reliefs parts.

## 1. Standards

EN 55015
EN 60598-1
EN 61000-3-2
EN 61000-3-3
EN 61000-4-4
EN 61000-4-5
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384

### 1.1 Glow-wire test

according to EN 61347-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

## 2. Thermal details and lifetime

### 2.1 Expected lifetime

| Expected lifetime |  |  |  |
| :--- | :--- | :---: | :---: |
| Type | ta | $\mathbf{4 0}{ }^{\circ} \mathrm{C}$ | $\mathbf{5 0}{ }^{\circ} \mathrm{C}$ |
| LC 7/180/42 fixC SC ADV2 | tc | $55^{\circ} \mathrm{C}^{\oplus}$ | $65^{\circ} \mathrm{C}^{\oplus}$ |
|  | Lifetime | $100,000 \mathrm{~h}$ | $50,000 \mathrm{~h}$ |

${ }^{(1)}$ Test result at max. output voltage.
The LED Drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than $10 \%$.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical
components (e.g. ELCAP) measured. Detailed information on request.

## 3. Installation / wiring

### 3.1 Circuit diagram

$220-240 \mathrm{~V}$
$50 / 60 \mathrm{~Hz}$


### 3.2 Wiring type and cross section

The wiring can be in stranded wires with ferrules or solid with a cross section of $0.2-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.


### 3.3 Release of the wiring

Press down the "push button" and remove the cable from front.


### 3.4 Fixing conditions when using as independent Driver with Clip-On

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire. Is not suitable for fixing in corner.


### 3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally 5 - 10 cm distance)
- Max. length of output wires is 2 m .
- To comply with the EMC regulations run the secondary wires (LED module) in parallel.
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).


### 3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 30 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

### 3.7 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

### 3.8 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

## LED Driver

Compact fixed output

## 4. Electrical values

### 4.1 Efficiency vs load


4.2 Power factor vs load


### 4.3 Input power vs load



### 4.4 Input current vs load


4.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current:


### 4.2 Maximum loading of automatic circuit breakers in relation to inrush current

| Automatic circuit breaker type | C10 | C13 | C16 | C20 | B10 | B13 | B16 | B20 |  | rent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installation $\varnothing$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $I_{\text {max }}$ | Time |
| LC 7/180/42 fixC SC ADV2 | 89 | 116 | 143 | 178 | 54 | 70 | 86 | 107 | 8.2 A | $184 \mu \mathrm{~s}$ |

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.3 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

|  | THD | 3. | 5 | 7. | 9. | 11. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LC 7/180/42 fixC SC ADV2 | $<15$ | $<12$ | $<10$ | $<7$ | $<5$ | $<3$ |

Acc. to 6100-3-2. Harmonics < 5 mA or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

## 5. Functions

### 5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED Driver switches off. After elimination of the short-circuit fault the LED Driver will recover automatically.

### 5.2 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

### 5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED Driver will protect itself and the output current will descrease till LED flicker. After elimination of the overload, the nominal operation is restored automatically.

## 6. Miscellaneous

### 6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with $1500 \mathrm{~V}_{\text {AC }}$ (or $1.414 \times 1500 \mathrm{~V}$ DC). To avoid damage to the electronic devices this test must not be conducted.

### 6.2 Conditions of use and storage

Humidity: $\quad 5 \%$ up to max. $85 \%$, not condensed
(max. 56 days/year at $85 \%$ )
Storage temperature: $-40^{\circ} \mathrm{C}$ up to $\mathrm{max} .+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range ( $\dagger$ a) before they can be operated.

The LED Driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

### 6.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.

### 6.4 Additional information

Additional technical information at www.tridonic.com $\rightarrow$ Technical Data
Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Tridonic manufacturer:
Other Similar products are found below :
ESS015W-1000-12 PDA-WIFI PIFC-K250F PITB-K222A ALD-514012PJ134 LB240S24KH LMH020-SPLC-0000-0000001 7953479535 EUG-200S210DT ESS030W-1050-21 ESS030W-0900-32 BPOXL 4-12-035 ESS010W-0350-24 ESM060W-1400-42 PDA080B-1A0G PDA150B-S1A5G SLM140W-1.05-130-ZA ESS015W-0700-18 EUD-150S350DVA LWA320-C420-ARK-B HVG-240-48AB HVG-32036AB HVG-320-54AB ELG-240-C1400AB EUK-150S105DV BXCS-12Z-N2P-B1-A BXPR-WN-01-A BXCS-12D-N2P-01-A BXCS-12W-N2P-01-A HLG-185H-C1400AB 980100001200394 LC 14W 250-350MA FLEXC R ADV2 LC 24W 500-600MA FLEXC R ADV2 LC 36W 850-900MA FLEXC R ADV2 LC 50W 200-350ML 170V FLEXC LP SNC4 LC 25W 200-350ML 70V FLEXC LP SNC4 LC 35W 200-350ML 121V FLEXC LP SNC4 LCBI 10W 350MA PHASE-CUT/1-10V LP LC 13W 300MA FIXC C SNC LC 10W 250MA FIXC SC SNC2 LC 35W 800MA FIXC SR ADV2 LC 38W 900MA FIXC SR ADV2 LC 34W 800MA FIXC SC ADV2 LC 44W 1050MA FIXC SC ADV2 LC 38W 900MA 42V FIXC SRL ADV2 HVG-320-48AB CNB50W-1200-42-CAS CNB30W-0600-42-CAS LCI 100W 1400MA TEC C


[^0]:    Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$.
    ${ }^{2}$ The trend between min. and full load is linear and depends on load's voltage-current character.
    ${ }^{(3)}$ Output current is mean value.
    ${ }^{(1)}$ Typical value at full load, depends on load's voltage-current character.

