Driver LC 25W 450-600mA flexC T SNC3

essence in-track series (3-phase system)

Black (RAL 9005)

White (RAL 9010)

Grey (RAL 7035)

Product description

_ Constant current / in-track LED driver
_ Optional accessory ACU ALU NIPPLE M10x1 for mounting the
luminaire head
_ Compatible 3-phase system in-tracks, see data sheet chapter 3.8
_ For luminaires of protection class II
_ Temperature protection as per EN 61347-2-13 C5e
_ Selectable fixed output current via DIP switch 600, 550, 500 and 450 mA (pre-selected current 450 mA)
_ Max. output power 25.2 W
_ Up to 86% efficiency
_ Nominal lifetime up to 100,000 h
_ 5 years guarantee (conditions at www.tridonic.com)

Housing properties

_ Casing: polycarbonate, black, white or grey
_ Type of protection IP20

Functions

_ Overload protection
_ Short-circuit protection
_ No-load protection

Typical applications

_ For spot light in retail and hospitality application

Website

http://www.tridonic.com/87501012

Driver LC 25W 450-600mA flexC T SNC3

essence in-track series (3-phase system)

Ordering data					
Type	Article number	Colour	Packaging, carton	Packaging, low volume	Packaging, high volume
LC 25/450-600/42 flexC T-B SNC3	$\mathbf{8 7 5 0 1 0 1 2}$	Black	$10 \mathrm{pc}(\mathrm{s})$.	$50 \mathrm{pc}(\mathrm{s})$.	Weight per pc.
LC 25/450-600/42 flexC T-W SNC3	$\mathbf{8 7 5 0 1 0 3 3}$	White	$10 \mathrm{pc}(\mathrm{s})$.	$50 \mathrm{pc}(\mathrm{s})$.	0.096 kg
LC 25/450-600/42 flexC T-G SNC3	$\mathbf{8 7 5 0 1 0 3 7}$	Grey	$10 \mathrm{pc}(\mathrm{s})$.	$50 \mathrm{pc}(\mathrm{s})$.	$850 \mathrm{pc}(\mathrm{s})$.

Technical data

Rated supply voltage	220-240 V
AC voltage range	198-264 V
Max. input current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0.14 A
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<450 \mu \mathrm{~A}$
Touch current (equipotential connected) ${ }^{(1)}$	$<450 \mu \mathrm{~A}$
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}$,
Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	30 W
Min. output power	10.8 W
Max. output power	25 W
Typ. efficiency (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	86\%
λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0.96
Output current tolerance ${ }^{\text {(2) }}$	± 7.5 \%
Max. output current peak ${ }^{\text {(8) }}$	678 mA
Max. output voltage (U-OUT)	60 V
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 15%
Output LF current ripple ($<120 \mathrm{~Hz}$) ${ }^{\text {(2) }}$	$\pm 5 \%$
Output P_ST_LM (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 0.5 s
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	≤ 0.5 s
Hold on time at power failure (output)	0 s
Ambient temperature ta (at lifetime 50,000 h)	$35^{\circ} \mathrm{C}$
Storage temperature ts	$-40 . . .+80^{\circ} \mathrm{C}$
Mains surge capability (between L-N)	1 kV
Mains surge capability (between L/N-PE)	2 kV
Surge voltage at output side (against PE)	< 3.5 kV
Lifetime	up to 100,000 h
Guarantee (conditions at www.tridonic.com)	5 Year(s)
Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	$168 \times 46 \times 32 \mathrm{~mm}$

Approval marks

Standards

EN 55015, EN 61000-3-2, EN 61000-3-3, EN 61347-1, EN 61347-2-13, EN 61547, EN 61000-4-4, EN 61000-4-5

LED drivers

In-track fixed output

Specific technical data

$\underset{\underset{Z}{2}}{\stackrel{\circ}{2}}$									
LC 25/450-600/42 flexC T-B SNC3	450 mA	24 V	42 V	18.9 W	22.0 W	100 mA	$60^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / 2=off
LC 25/450-600/42 flexC T-B SNC3	500 mA	24 V	42 V	21.0 W	24.5 W	110 mA	$65^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / 2=on
LC 25/450-600/42 flexC T-B SNC3	550 mA	24 V	42 V	23.1 W	27.0 W	125 mA	$65^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=on / 2=off
LC 25/450-600/42 flexC T-B SNC3	600 mA	24 V	42 V	25.2 W	30.0 W	140 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=on/2=on
LC 25/450-600/42 flexC T-W SNC3	450 mA	24 V	42 V	18.9 W	22.0 W	100 mA	$60^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / 2=off
LC 25/450-600/42 flexC T-W SNC3	500 mA	24 V	42 V	21.0 W	24.5 W	110 mA	$65^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / 2=on
LC 25/450-600/42 flexC T-W SNC3	550 mA	24 V	42 V	23.1 W	27.0 W	125 mA	$65^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=on / 2=off
LC 25/450-600/42 flexC T-W SNC3	600 mA	24 V	42 V	25.2 W	30.0 W	140 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	$1=0 \mathrm{n} / 2=o n$
LC 25/450-600/42 flexC T-G SNC3	450 mA	24 V	42 V	18.9 W	22.0 W	100 mA	$60^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / 2=off
LC 25/450-600/42 flexC T-G SNC3	500 mA	24 V	42 V	21.0 W	24.5 W	110 mA	$65^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / 2=on
LC 25/450-600/42 flexC T-G SNC3	550 mA	24 V	42 V	23.1 W	27.0 W	125 mA	$65^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=on / 2=off
LC 25/450-600/42 flexC T-G SNC3	600 mA	24 V	42 V	25.2 W	30.0 W	140 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=on / 2=on

(1) Maximum of "perception and reaction" and "let go" values according to EN 60598-1.
(2) Test result at $25^{\circ} \mathrm{C}$.
(3) Test result at max. current.
(4) Output current is mean value.

LED drivers

In-track fixed output

ACU ALU NIPPLE M10x1

Product description

_ Optional threaded sleeve for luminaire mounting
_ Suitable for S-9009/D-M10 threaded nut
_ Additional mounting equipment, e.g. M13x1 available at AAG
Stucchi (http://www.aagstucchi.it/en/)

Website

http://www.tridonic.com/28002398

Ordering data

Type	Article number	Packaging, bag	Weight per pc.
ACU ALU NIPPLE M10x1	$\mathbf{2 8 0 0 2 3 9 8}$	$100 \mathrm{pc}(\mathrm{s})$.	0.007 kg

In-track fixed output

1. Standards

EN 55015

EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 61000-4-4
EN 61000-4-5

1.1 Glow-wire test

According to EN 61347-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

2. Thermal details and lifetime

2.1 Expected lifetime

Type	Output current	ta	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
LC 25/450-600/42 flexC T SNC3	450 mA	Lifetime	> 100,000 h	> 50,000 h
	500 mA	Lifetime	> 100,000 h	> 50,000 h
	550 mA	Lifetime	> 100,000 h	> 50,000 h
	600 mA	Lifetime	> 100,000 h	> 50,000 h

The LED drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.

Temperatures were measured with Tracktype PRO-310 from manufacturer powergear. Temperatures can deviate with tracks from other manufacturers.

3. Installation / wiring

3.1 Circuit diagram

3.2 Wiring type and cross section

For wiring use stranded wire with ferrules or solid wire from $0.5-1.5 \mathrm{~mm}^{2}$ Strip 8.5-9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Max. length of output wires is 20 cm .
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 30 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Mounting luminaire

Max. allowed weight of complete luminaire: $5 \mathrm{~kg}(50 \mathrm{~N})$

LED drivers

In-track fixed output

3.8 Compatible tracks

Subject to be changed without notice.

Manufacturer	Type	System	Intrack casing colour
EUTRAC	$25-X X-X X / 26-X X-X X$	$3 P$	Black, white, grey
GGuzzini	$6771-6774$	$3 P$	Black, white, grey
GGuzzini	$6779-6782$	$3 P$	Black, white, grey
IVELA	$7501 / 7511 / 7512$	$3 P$	Black, white, grey
LUMISYS UNIPRO	T32 / T33 /34	$3 P$	Black, white, grey
LUMISYS UNIPRO	T32F / T33F /34F	$3 P$	Black, white, grey
NORDIC ALUMINIUM	GLOBAL Trac Pro XTS 4xxx	$3 P$	Black, white, grey
NORDIC ALUMINIUM	GLOBAL Trac Pro XTSF 4xxx	$3 P$	Black, white, grey
ZUMTOBEL	S280...	$3 P$	Black, white, grey
ERCO	$783 . .$.	$3 P$	Black, white, grey
SIDE	25101	$3 P$	Black, white, grey
PHILIPS	RCS350 3C	$3 P$	Black, white, grey
FOSNOVA	OMNITRACK	$3 P$	Black, white, grey
Stucchi	One track	$3 P$	Black, white, grey
Powergear	PRO-04X0	$3 P$	Black, white, grey
Unipro	T32W	3P	Black, white, grey
Unipro	T32FW	3P	Black, white, grey

Tests have been done with in-tracks taken from the market in the first half of 2020 .

Tridonic has no control or responibility on any future or past possible changes made by different manufactures that could affect the compatiblity between tracks and adapters.

3.9 Adapter mounting into the track

Insert the adapter into the track, so that the mechanical key (A) in the adaptor matches the groove (B) in the track. Rotate of about 90° the lever of the cam (C) until it reachs the locking position.
To open rotate the lever the opposite direction.

450 mA : Switch 1 = Off, Switch 2 = Off

500 mA : Switch 1 = Off, Switch 2 = On

550 mA: Switch 1 = On, Switch 2 = Off

600 mA : Switch $1=$ On, Switch $2=$ On

it is possible to sele the phase (L1, L2 or L3) to distribute the single luminaires in the system, by means of the proper selector (A) of the adaptor

4. Electrical values

4.1 Efficiency vs load

4.2 Power factor vs load

4.3 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.6 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation Ø	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	Time
LC 25/450-600/42 flexC T SNC3	57	74	91	114	57	74	91	114	6 A	$20 \mu \mathrm{~s}$

These are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S 200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.7 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5	7.	9.	11.
LC 25/450-600/42 flexC T SNC3	<15	<12	<5	<5	<5	<3

Acc. to 61000-3-2. Harmonics $<5 \mathrm{~mA}$ or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver switches off. After elimination of the short-circuit fault the LED driver will recover automatically.

5.2 No-load operation

The LED driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver will protect itself and LED may flicker. After elimination of the overload the nominal operation will recover automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dC). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity: $\quad 5 \%$ up to max. 85%, not condensed (max. 56 days/year at 85%)

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (ta) before they can be operated.

6.3 Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Tridonic manufacturer:
Other Similar products are found below :
PIFC-K250F PITB-K222A AC-A60VD24H2.5 ALD-514012PJ134 PWD-60-1-70-P EUG-200S210DT ESS030W-1050-21 BPOXL 4-12035 ESS010W-0180-42 ESS010W-0350-24 ESS010W-0200-42 SLM140W-1.05-130-ZA ESS015W-0700-18 HVG-240-48AB HVG-24054AB OTE 25/220-240/700 PC DAL30W-0600-42-T HVG-320-48AB CNB30W-0600-42-CAS 87500757 I-SELECT 2 PLUG 2100MA BL LCU 48V 75W DC-STR FO LC 45 W 500-1400 MA FLEXC SC EXC I-SELECT 2 PLUG 2000MA BL LC 50/200-350/170 FLEXCC LP SNC3 LCO 14/100-500/38 O4A NF C EXC3 LC 28W 300-700MA 42 FLEXC NF SC EXC3 LC 44/1050/42 FIXC SRL ADV2 LCA 60W 900-1750MA ONE4ALL C PRE LC 8/180/44 FIXC SR SNC2 LC 19/200-350/54 FLEXC LP SNC4 BXDR-PS-75BS-E116D-01-A LC 30/500/54 FIXC SR SNC2 LCA 60W 24V ONE4ALL SC PRE SP LC 60W 75-330MA 310V FLEXC NF H16 EXC4 LC 8/180/42 FIXC PC SR SNC2 LC 10/350/29 FIXC SR SNC2 LC 25/500/43 FIXC SR SNC2 LC 50/100-400/140 PO4A NF H16 PRE3 LC 25/600/42 FIXC SRL ADV2 LCO 24/200-1050/39 NF C ADV3 ELEMENT 35/220...240/900 G3 LC 25W 350-1050MA FLEXC SR EXC LC 60/700/86 FIXC SR SNC2 LC 35W 24 ONE4ALL IP PRE BXDR-PS-25BS-E107D-01-A LC 17W 250-700MA FLEXC SR EXC LC 15W 350MA FIXC C SNC LC 14W 700MA FIXC PC SR SNC2 LC 200W 24V SC SNC

