Driver LC 38W 350-500mA 85V flexC lp SNC4
essence series

TRIDONIC

Product description

_ LED Constant current LED driver for luminaire installation
_ For class I luminaires
_ Temperature protection as per EN 61347-2-13 C5e
_ Selectable fixed output current 350, 400, 450 and 500 mA (pre-

- selected current 500 mA)
_ Max. output power 38.3 W
_ Up to 90% efficiency
_ Nominal lifetime up to $100,000 \mathrm{~h}$
_ 5 years guarantee (conditions at
https://www.tridonic.com/manufacturer-guarantee-conditions)

Housing properties

_ Casing: metal, white

- Type of protection IP20

Functions

_ Overload protection

- Short-circuit protection
_ No-load protection
_ Overtemperature protection

Website

http://www.tridonic.com/87501116

Driver LC 38W 350-500mA 85V flexC Ip SNC4

essence series

Ordering data					
Type	Article number	Packaging, carton	Packaging, low volume	Packaging, high volume	Weight per pc.
LC 38/350-500/85 flexC Ip SNC4	$\mathbf{8 7 5 0 1 1 1 6}$	$50 \mathrm{pc}(\mathrm{s})$.	$1,100 \mathrm{pc}(\mathrm{s})$.	$3,300 \mathrm{pc}(\mathrm{s})$.	0.125 kg

Technical data

Rated supply voltage	220-240 V
AC voltage range	198-264 V
DC voltage range	176-280 V
Max. input current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{(1)}$	190 mA
Typ. current ($220 \mathrm{~V}, 0 \mathrm{~Hz}$, full load, EOFx dimlevel)	220 mA
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<450 \mu \mathrm{~A}$
Mains frequency	$0 / 50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}$,
Output power range	12.3 - 38.3 W
Typ. efficiency (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{(1)}$	90 \%
λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{(1)}$	0.95
Output current tolerance ${ }^{(2)}$	± 7.5 \%
Max. output voltage (U-OUT)	300 V
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{(1)}$	< 15 \%
Max. peak output current at full load ${ }^{(1)}$	564 mA
Output LF current ripple ($<120 \mathrm{~Hz}$)	$\pm 5 \%$
Output P_ST_LM (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Starting time (DC mode)	$\leq 0.5 \mathrm{~s}$
Switchover time (AC/DC)	$\leq 0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta (at lifetime 50,000 h)	$60^{\circ} \mathrm{C}$
Storage temperature ts	$-40 . . .+80^{\circ} \mathrm{C}$
Mains burst capability	1 kV
Mains surge capability (between L-N)	1 kV
Mains surge capability (between L/N-PE)	2 kV
Surge voltage at output side (against PE)	3.5 kV
Lifetime	up to 100,000 h
Guarantee (conditions at www.tridonic.com)	$5 \mathrm{Year}(\mathrm{s})$
Dimensions L $\times W \times \mathrm{H}$	$210 \times 30 \times 21 \mathrm{~mm}$
Hole spacing D	198 mm

Approval marks

LED drivers

Linear fixed output non－SELV

Standards

EN 55015，EN 61000－3－2，EN 61000－3－3，EN 61347－1，EN 61347－2－13，EN 61547，EN 62384，according to EN 50172，according to EN 60598－2－22

$\stackrel{\text { ® }}{\stackrel{\circ}{2}}$							$\begin{aligned} & \text { to } \\ & \stackrel{\circ}{\circ} \times \underset{\sim}{x} \\ & \hline \end{aligned}$		$\begin{aligned} & \overleftarrow{\overleftarrow{\omega}} \\ & \stackrel{\rightharpoonup}{凶} \\ & \stackrel{\rightharpoonup}{\#} \\ & \stackrel{1}{2} \end{aligned}$
LC 38／350－500／85 flexC Ip SNC4	350 mA	35 V	85 V	29.8 W	32.5 W	150 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+60^{\circ} \mathrm{C}$	1＝off／2＝off
LC 38／350－500／85 flexC Ip SNC4	400 mA	35 V	85 V	34.0 W	37.0 W	170 mA	$72{ }^{\circ} \mathrm{C}$	$-20 . . .+60^{\circ} \mathrm{C}$	1＝on／2＝off
LC 38／350－500／85 flexC Ip SNC4	450 mA	35 V	85 V	38.3 W	41.5 W	190 mA	$72^{\circ} \mathrm{C}$	$-20 \ldots+60^{\circ} \mathrm{C}$	1＝off／ $2=0$ n
LC 38／350－500／85 flexC Ip SNC4	500 mA	35 V	76 V	38.0 W	42.0 W	190 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+60^{\circ} \mathrm{C}$	1＝on／2＝on

（1）Test result at 500 mA ．
（2）Test result at $25^{\circ} \mathrm{C}$ ．
（3）Output current is mean value．

LED drivers

Linear fixed output non-SELV

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384
According to EN 50172 for use in central battery systems
According to EN 60598-2-22 suitable for emergency lighting installations

2. Thermal details and lifetime

2.1 Expected lifetime

Type	Output current	ta	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
LC 38/350-500/85 flexC Ip SNC4	350 mA	tc	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
		Lifetime	> 100,000 h	> 100,000 h	80,000 h
	400 mA	tc	$62^{\circ} \mathrm{C}$	$67^{\circ} \mathrm{C}$	$72{ }^{\circ} \mathrm{C}$
		Lifetime	>100,000 h	$>100,000 \mathrm{~h}$	$70,000 \mathrm{~h}$
	450 mA	tc	$62{ }^{\circ} \mathrm{C}$	$67^{\circ} \mathrm{C}$	$72{ }^{\circ} \mathrm{C}$
		Lifetime	>100,000 h	90,000 h	60,000 h
	500 mA	tc	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
		Lifetime	> 100,000 h	75,000 h	50,000 h

[^0]The relation of tc to ta temperature depends also on the luminaire design.
If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request

LED drivers

Linear fixed output non-SELV

3. Installation / wiring

3.1 Circuit diagram

$220-240 \mathrm{~V}$

0/50/60 Hz

3.2 Wiring type and cross section

For wiring use stranded wire with ferrules or solid wire from $0.5-1.5 \mathrm{~mm}^{2}$. Strip 8.5 - 9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals (WAGO 250)

wire preparation:

$0.5-1.5 \mathrm{~mm}^{2}$

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED driver and other leads (ideally 5-10 cm distance)
- Max. length of output wires is 2 m .
- Incorrect wiring can damage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver etc.).

3.5 Earth connection

The earth connection is conducted as protection earth (PE).
If the LED Driver will be earthed, protection earth (PE) has to be used. Earth connection is recommended to improve following behaviour:

- Electromagnetic interferences (EMI)
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 20 seconds
4. Connect LED module again

Hot plug-in or output switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

3.8 Current setting

Set the current by DIP switch after mains off Use of DIP switch only after mains off.

350 mA : Switch 1 = Off, Switch 2 = Off

400 mA : Switch 1 = On, Switch 2 = Off

450 mA: Switch 1 = Off, Switch 2 = On

500 mA : Switch $1=$ On, Switch $2=$ On

LED drivers

Linear fixed output non-SELV

4. Electrical values

4.1 Efficiency vs load

THD without harmonic < $5 \mathrm{~mA}(0.6 \%$) of the input current:

4.2 Power factor vs load

4.4 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	Time
LC 38/350-500/85 flexC Ip SNC4	35	45	57	70	21	27	34	42	18 A	180 ¢s

These are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker
Calculation uses typical values from ABB series S 200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment
4.5 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)

in \%

	THD	3.	5.	7.	9.	11.
LC 38/350-500/85 flexC Ip SNC4	<15	<10	<5	<5	<5	<3

Acc. to 61000-3-2. Harmonics < 5 mA or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the output side (LED) the LED driver switches off. After elimination of the short-circuit fault the LED driver will recover automatically.

5.2 No-load operation

The LED driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

5.4 Overtemperature protection

The LED Driver is protected against temporary thermal overheating. If the temperature limit is exceeded the LED Driver will switch off. It restarts automatically.
The temperature protection is activated typically at $12{ }^{\circ} \mathrm{C}$ above tc max.

5.5 DC emergency operation

The LED driver is designed to operate on DC voltage and pulsed DC voltage. For a reliable operation, make sure that also in DC emergency operation the LED driver is run within the specified conditions.

Light output level in DC operation (EOF ${ }_{\mathrm{X}}$): 98% (cannot be adjusted)

The voltage-dependent input current of Driver incl. LED module is depending on the used load.

The voltage-dependent no-load current of Driver (without or defect LED module) is for:
$\mathrm{AC}:<27 \mathrm{~mA}$
DC: $<15 \mathrm{~mA}$

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with $1500 \mathrm{~V}_{\text {AC }}$ (or $1.414 \times 1500 \mathrm{~V}$ dC). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity:	5% up to max. 85%, not condensed (max. 56 days $/$ year at $85 \%)$
Storage temperature:	$-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

The LED driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

6.3 Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Tridonic manufacturer:
Other Similar products are found below :
PIFC-K250F PITB-K222A AC-A60VD24H2.5 ALD-514012PJ134 PWD-60-1-70-P EUG-200S210DT ESS030W-1050-21 BPOXL 4-12035 ESS010W-0180-42 ESS010W-0350-24 ESS010W-0200-42 SLM140W-1.05-130-ZA ESS015W-0700-18 HVG-240-48AB HVG-24054AB OTE 25/220-240/700 PC DAL30W-0600-42-T HVG-320-48AB CNB30W-0600-42-CAS 87500757 I-SELECT 2 PLUG 2100MA BL LCU 48V 75W DC-STR FO LC 45 W 500-1400 MA FLEXC SC EXC I-SELECT 2 PLUG 2000MA BL LC 50/200-350/170 FLEXCC LP SNC3 LCO 14/100-500/38 O4A NF C EXC3 LC 28W 300-700MA 42 FLEXC NF SC EXC3 LC 44/1050/42 FIXC SRL ADV2 LCA 60W 900-1750MA ONE4ALL C PRE LC 8/180/44 FIXC SR SNC2 LC 19/200-350/54 FLEXC LP SNC4 BXDR-PS-75BS-E116D-01-A LC 30/500/54 FIXC SR SNC2 LCA 60W 24V ONE4ALL SC PRE SP LC 60W 75-330MA 310V FLEXC NF H16 EXC4 LC 8/180/42 FIXC PC SR SNC2 LC 10/350/29 FIXC SR SNC2 LC 25/500/43 FIXC SR SNC2 LC 50/100-400/140 PO4A NF H16 PRE3 LC 25/600/42 FIXC SRL ADV2 LCO 24/200-1050/39 NF C ADV3 ELEMENT 35/220...240/900 G3 LC 25W 350-1050MA FLEXC SR EXC LC 60/700/86 FIXC SR SNC2 LC 35W 24 ONE4ALL IP PRE BXDR-PS-25BS-E107D-01-A LC 17W 250-700MA FLEXC SR EXC LC 15W 350MA FIXC C SNC LC 14W 700MA FIXC PC SR SNC2 LC 200W 24V SC SNC

[^0]: The LED driver is designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.

