TRIDONIC

LED Driver

Linear fixed output

Driver LC 38W 250-350mA flexC Ip ADV
advanced series non-SELV

Product description

- Built-in constant current LED Driver
- New version DC operating with EL marking
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Adjustable output current between 250 and 350 mA
- Max. output power 38 W
- Up to 88.5 \% efficiency
- Nominal lifetime up to 100,000 h
- 5 years guarantee (conditions at www.tridonic.com)

Housing properties

- Low-profile metal casing with white cover
- Type of protection IP20

Interfaces

- Terminal blocks: 45° push terminals

Functions

- Overload protection
- Short-circuit protection
- No-load protection
- Burst protection voltage 1 kV
- Surge protection voltage $1 \mathrm{kV}(\mathrm{L}$ to N$)$
- Surge protection voltage 2 kV (L/N to earth)
- Suitable for emergency lighting systems acc. to EN 50172

Typical applications

- For linear/area lighting in office applications

Standards, page 4
Wiring diagrams and installation examples, page 4

Driver LC 38W 250-350mA flexC Ip ADV
advanced series non-SELV

Ordering data

Type	Article number	Packaging, carton	Packaging, pallet	Weight per pc.
LC 38W 250-350mA flexC Ip ADV	$\mathbf{2 8 0 0 2 4 6 5}$	$50 \mathrm{pc}(\mathrm{s})$.	$900 \mathrm{pc}(\mathrm{s})$.	0.161 kg

Specific technical data

Type	Output current ${ }^{(2)}$	Min. forward voltage	Max. forward voltage	Max. output power	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Typ. current consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Max. casing temperature tc	Ambient temperature ta max.	I-out select	Resistor ${ }^{(4)}$
LC 38W 250-350mA flexC lp ADV	250 mA	51 V	109 V	27.3 W	30.4 W	137 mA	$70^{\circ} \mathrm{C}$	$-20 . . .+55^{\circ} \mathrm{C}$	0-2	ADV Type A
	275 mA	51 V	109 V	30.0 W	33.4 W	149 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	0-2	ADV Type B
	300 mA	51 V	109 V	32.7 W	36.5 W	163 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	0-1	ADV Type A
	325 mA	51 V	109 V	35.4 W	39.9 W	178 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	0-2	ADV Type C
	350 mA	51 V	109 V	38.2 W	42.5 W	189 mA	$70^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	open	-

[^0]
Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver serie LC flexC ADV; not compatible with I-SELECT (generation 1) and I-SELECT 2 (generation 2)
- Resistor is base insulated
- When using your own resistors, make sure the resistor must be insulated
- Resistor power 0.25 W
- Current tolerance $\pm 2 \%$ additional to output current tolerance
- Hot plug of the resistor is not permitted
- For detailed current setting see table "Specific technical data" of the respective LED Driver and chapter 3.8 Current setting

Ordering data							
Type	Article number	Colour of X area	Colour of Y area	Marking	Resistor value	Packaging bag	Weight per pc.
ADV Plug Type A YL	$\mathbf{2 8 0 0 1 7 7 1}$	Yellow	Yellow	A	0.0Ω	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
ADV Plug Type B YL	$\mathbf{2 8 0 0 1 7 7 2}$	Yellow	Black	B	$3.16 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
ADV Plug Type C YL	$\mathbf{2 8 0 0 1 7 7 3}$	Yellow	Purple	C	$28.7 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384
According to EN 50172 for use in central battery systems
According to EN 60598-2-22 suitable for emergency lighting installations

2. Thermal details and lifetime

2.1 Expected lifetime

Expected lifetime

| Type | ta | $\mathbf{4 0}$ | |
| :--- | :--- | :--- | :---: | :---: | :---: |
| C | \mathbf{C} | $\mathbf{5 0}$ | |
| | $\mathbf{6 0}$ | | |
| C | | | |

The LED Driver is designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.

The relation of tc to ta temperature depends also on the luminaire design.
If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / wiring

3.1 Circuit diagram

220-240 V
$0 / 50 / 60 \mathrm{~Hz}$

3.2 Wiring type and cross section

The wiring can be stranded wires with ferrules or rigid wires with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$.
Strip 8.5 - 9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals.

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

LED Driver

Linear fixed output

3.8 Current setting

250 mA : Terminal 0 and 2 connected with 0Ω wire (max. 6 cm length) or resistor ADV Plug Type A BR (article number: 28001771)

$\mathbf{2 7 5} \mathbf{~ m A : ~ T e r m i n a l ~} 0$ and 2 connected with resistor ADV Plug Type B BR (article number: 28001772)

300 mA : Terminal 0 and 1 connected with 0Ω wire (max. 6 cm length) or resistor ADV Plug Type A BR (article number: 28001771)

325 mA: Terminal 0 and 2 connected with resistor ADV Plug Type C BR (article number: 28001773)

350 mA : All terminals open

3.9 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

4. Electrical values

Test at $230 \vee 50 \mathrm{~Hz}$.

4.1 Efficiency vs load

4.2 Power factor vs load

4.3 Input power vs load

LED Driver

Linear fixed output

4.4 Input current vs load

4.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.6 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	1 max	Time
LC 38W 250-350mA flexC lp ADV	40	51	63	80	24	31	38	48	15 A	$250 \mu \mathrm{~s}$

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker.
Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.

4.7 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)

in \%

	THD	3.	5	7.	9.	11.
LC 38W 250-350mA flexC Ip ADV	<18	<15	<4	<3	<2	<1

Acc. to 6100-3-2. Harmonics $<5 \mathrm{~mA}$ or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the output side (LED) the LED Driver switches into hic-cup mode. After elimination of the short-circuit fault the LED Driver will recover automatically.

5.2 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED Driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

5.4 DC emergency operation

The LED Driver is designed to operate on DC voltage and pulsed DC voltage. For a reliable operation, make sure that also in DC emergency operation the LED Driver is run within the specified conditions.

Light output level in DC operation (EOF ${ }_{i}$): 100 \% (cannot be adjusted)
The voltage-dependent input current of Driver incl. LED module is depending on the used load.

The nominal voltage-dependent no-load current of Driver (without or defect LED module) is for:
AC: < 18 mA
$D C:<5 \mathrm{~mA}$

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with $1500 \mathrm{~V}_{\text {AC }}$ (or $1.414 \times 1500 \mathrm{~V}$ dc). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity: $\quad 5 \%$ up to max. 85%,
not condensed
(max. 56 days/year at 85%)
Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (ta) before they can be operated.

The LED Driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

6.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Tridonic manufacturer:
Other Similar products are found below :
ESS015W-1000-12 PDA-WIFI PIFC-K250F PITB-K222A ALD-514012PJ134 LB240S24KH LMH020-SPLC-0000-0000001 795347953 EUG-200S210DT ESS030W-1050-21 ESS030W-0900-32 BPOXL 4-12-035 ESS010W-0350-24 ESM060W-1400-42 PDA080B-1A0G PDA150B-S1A5G SLM140W-1.05-130-ZA ESS015W-0700-18 EUD-150S350DVA LWA320-C420-ARK-B HVG-240-48AB HVG-32036AB HVG-320-54AB ELG-240-C1400AB EUK-150S105DV BXCS-12Z-N2P-B1-A BXPR-WN-01-A BXCS-12D-N2P-01-A BXCS-12W-N2P-01-A LC 50W 200-350ML 170V FLEXC LP SNC4 LC 25W 200-350ML 70V FLEXC LP SNC4 LC 35W 200-350ML 121V FLEXC LP SNC4 LC 10W 250MA FIXC SC SNC2 LC 35W 800MA FIXC SR ADV2 LC 38W 900MA FIXC SR ADV2 LC 34W 800MA FIXC SC ADV2 LC 44W 1050MA FIXC SC ADV2 LC 38W 900MA 42V FIXC SRL ADV2 HVG-320-48AB CNB50W-1200-42-CAS CNB30W-0600-42-CAS LCI 100W 1400MA TEC C LCI 100W 2100MA TEC C LCI 150W 1750MA TEC C LCI 150W 2100MA TEC C $\underline{87500284} 87500447$ LC 50W 1200MA FIXC SR SNC 87500554

[^0]: ${ }^{(1)}$ Test result at 350 mA .
 (2) Output current is mean value
 (3) Test result at $25^{\circ} \mathrm{C}$.
 ${ }^{(4)}$ Type A is a short circuit plug (0Ω)
 ${ }^{(5)}$ Valid for immediate change of power supply type otherwise the starting time is valid.

