TRIDONIC

LED driver
Compact fixed output

Product description

- Independent LED driver with cable clamps
- For luminaires with M and MM as per EN 60598, VDE 0710 and VDE 0711
- Temperature protection as per EN 61347-2-13 C5e
- Output current 900 or $1,050 \mathrm{~mA}$
- Max. output power 40 W
- Nominal lifetime up to 50,000 h
- 5 years guarantee (conditions at www.tridonic.com)

Housing properties

- Casing: polycarbonat, white
- Type of protection IP20
- Push-in terminals
- 2 separate strain relief parts for input and output cables with highly robust clamps

Functions

- Overload protection
- Short-circuit protection
- No-load protection
- No output current overshoot at mains on/off
- Burst protection voltage 1 kV
- Surge protection voltage $1 \mathrm{kV}(\mathrm{L}$ to N$)$
- Surge protection voltage 2 kV (L/N to earth)

Typical applications

- For spot light and downlight in retail and hospitality application
- For panel light and area light in office and education application

Driver LC 40W 900/1050mA fixC SR SNC2
essence series

\rightarrow

Standards, page 3
Wiring diagrams and installation examples, page 3

TRIDONIC
 RoHS

LED driver
Compact fixed output

Driver LC 40W 900/1050mA fixC SR SNC2

essence series

Technical data

Rated supply voltage	$220-240 \mathrm{~V}$
AC voltage range	$198-264 \mathrm{~V}$
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~h}$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 20 \%$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, min. load)	$\leq 20 \%$
Output current tolerance ${ }^{\circledR}$	$\pm 7.5 \%$
Typ. output LF current ripple at full load ${ }^{\circledR}$	$\pm 25 \%$
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure	0 s
Ambient temperature ta	$-20 \ldots+50{ }^{\circ} \mathrm{C}$
Ambient temperature ta (at lifetime $50,000 \mathrm{~h})$	$40{ }^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Lifetime	up to $50,000 \mathrm{~h}$
Guarantee (conditions at www.tridonic.com)	5 years
Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	$127 \times 43 \times 30 \mathrm{~mm}$

Ordering data

Type	Article number	Packaging, carton	Packaging, low volume	Packaging, high volume	Weight per
LC 40/900/45 fixC SR SNC2	$\mathbf{8 7 5 0 0 7 6 2}$	$49 \mathrm{pc}(\mathrm{s})$.	$686 \mathrm{pc}(\mathrm{s})$.	$3,430 \mathrm{pc}(\mathrm{s})$.	0.113 kg
LC 40/1050/39 fixC SR SNC2	$\mathbf{8 7 5 0 0 7 6 3}$	$\mathbf{4 9} \mathrm{pc}(\mathrm{s})$.	$686 \mathrm{pc}(\mathrm{s})$.	$3,430 \mathrm{pc}(\mathrm{s})$.	0.113 kg

Specific technical data

Type	Output current ${ }^{\text {² }}$	Input current (at 230 V , 50 Hz , full load)	Max. input power	Typ. power consumption (at 230 V , 50 Hz , full load)	Output power	$\begin{gathered} \lambda \text { at } \\ \text { full load }{ }^{(®)} \end{gathered}$	```Efficiency at full load ($```	$\begin{gathered} \lambda \text { at min. } \\ \text { load }^{\oplus} \end{gathered}$	```Efficiency at min. load (D```	Min. forward voltage ${ }^{\oplus}$	Max. forward voltage ${ }^{\text {(1) }}$	Max. output voltage	Max. peak output current at full load ${ }^{(®)}$	Max. peak output current at min. load $^{\left({ }^{(1)}\right.}$	Max. casing temperature tc
LC 40/900/45 fixC SR SNC2	900 mA	220 mA	46 W	45.0 W	$24.3-40.5 \mathrm{~W}$	0.95	90%	0.90C	88 \%	27 V	45 V	60 V	1,260 mA	1,450 mA	$80^{\circ} \mathrm{C}$
LC 40/1050/39 fixC SR SNC2	1050 mA	220 mA	47 W	45.5 W	24.2-41.0 W	0.95	90%	0.90C	88 \%	23 V	39 V	60 V	1,470 mA	1,700 mA	$85^{\circ} \mathrm{C}$

[^0]
1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 60598-1
EN 62384

1.1 Glow wire test

according to EN 60598-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed

2. Thermal details and lifetime

2.1 Expected lifetime

Expected lifetime			
Type	ta	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$
LC 40/900/45 fixC SR SNC2	tc	$70^{\circ} \mathrm{C}{ }^{\oplus}$	$80^{\circ} \mathrm{C}^{\oplus}$
	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$
LC 40/1050/39 fixC SR SNC2	tc	$75^{\circ} \mathrm{C}^{\oplus}$	$85^{\circ} \mathrm{C}^{(1}$
	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$

${ }^{(1)}$ Test result at max. output voltage.
The LED drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.
Lifetime declarations are informative and represent no warranty claim.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical
components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / wiring

3.1 Circuit diagram

220-240 V
$50 / 60 \mathrm{~Hz}$

3.2 Wiring type and cross section

For wiring use stranded wire with ferrules or solid wire from $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.
The max. torque at the clamping screw (M3) is 0.3 Nm .

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire. Is not suitable for fixing in corner.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED driver and other leads (ideally $5-10 \mathrm{~cm}$ distance)
- Max. length of output wires is 2 m
- To comply with the EMC regulations run the secondary wires (LED module) in parallel.
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 20 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

3.8 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

LED driver

Compact fixed output

4. Electrical values

4.1 Diagrams LC 40W 900mA fixC SR SNC2

4.1.1 Efficiency vs load

4.1.2 Power factor vs load

4.1.3 Input power vs load

4.1.4 Input current vs load

4.1.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.2 Diagrams LC 40W 1050mA fixC SR SNC2

4.2.2 Power factor vs load

4.2.4 Input current vs load

4.2.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.2.3 Input power vs load

4.3 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation Ø	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	Time
LC 40/900/45 fixC SR SNC2	35	50	65	75	35	50	65	75	10 A	$100 \mu \mathrm{~s}$
LC 40/1050/39 fixC SR SNC2	35	50	65	75	35	50	65	75	10 A	$100 \mu \mathrm{~s}$

These are max. values calculated out of continuous current running the device on full load.
There is no limitation due to inrush current.
If load is smaller than full load for calculation only continuous current has to be considered.
4.4 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5.	7.	9.	11.
LC 40/900/45 fixC SR SNC2	<15	<15	<5	<4	<3	<3
LC 40/1050/39 fixC SR SNC2	<15	<15	<5	<4	<3	<3

Acc. to 6100-3-2. Harmonics $<5 \mathrm{~mA}$ or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver switches into hic-cup mode. After elimination of the short-circuit fault the LED driver will recover automatically.

5.2 No-load operation

The LED driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ DC). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity: $\quad 5 \%$ up to max. 85%, not condensed (max. 56 days/year at 85%)

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (ta) before they can be operated.

6.3 Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Tridonic manufacturer:
Other Similar products are found below :
PIFC-K250F PITB-K222A AC-A60VD24H2.5 ALD-514012PJ134 PWD-60-1-70-P EUG-200S210DT ESS030W-1050-21 BPOXL 4-12035 ESS010W-0180-42 ESS010W-0350-24 ESS010W-0200-42 SLM140W-1.05-130-ZA ESS015W-0700-18 HVG-240-48AB HVG-24054AB OTE 25/220-240/700 PC DAL30W-0600-42-T HVG-320-48AB CNB30W-0600-42-CAS 87500757 I-SELECT 2 PLUG 2100MA BL LCU 48V 75W DC-STR FO LC 45 W 500-1400 MA FLEXC SC EXC I-SELECT 2 PLUG 2000MA BL LC 50/200-350/170 FLEXCC LP SNC3 LCO 14/100-500/38 O4A NF C EXC3 LC 28W 300-700MA 42 FLEXC NF SC EXC3 LC 44/1050/42 FIXC SRL ADV2 LCA 60W 900-1750MA ONE4ALL C PRE LC 8/180/44 FIXC SR SNC2 LC 19/200-350/54 FLEXC LP SNC4 BXDR-PS-75BS-E116D-01-A LC 30/500/54 FIXC SR SNC2 LCA 60W 24V ONE4ALL SC PRE SP LC 60W 75-330MA 310V FLEXC NF H16 EXC4 LC 8/180/42 FIXC PC SR SNC2 LC 10/350/29 FIXC SR SNC2 LC 25/500/43 FIXC SR SNC2 LC 50/100-400/140 PO4A NF H16 PRE3 LC 25/600/42 FIXC SRL ADV2 LCO 24/200-1050/39 NF C ADV3 ELEMENT 35/220...240/900 G3 LC 25W 350-1050MA FLEXC SR EXC LC 60/700/86 FIXC SR SNC2 LC 35W 24 ONE4ALL IP PRE BXDR-PS-25BS-E107D-01-A LC 17W 250-700MA FLEXC SR EXC LC 15W 350MA FIXC C SNC LC 14W 700MA FIXC PC SR SNC2 LC 200W 24V SC SNC

[^0]: Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$
 ${ }^{\text {® }}$ Output current is mean value.
 ${ }^{(3)}$ Typical value at full load, depends on load's voltage-current character.
 ${ }^{(1)}$ The trend between min. and full load is linear and depends on load's voltage-current character.

