## TRIDONIC

## LED Driver

Linear dimming

## Driver LC 75W 250-550mA 1-10V Ip EXC

excite 1-10 $V$ non-SELV series

## Product description

- Built-in constant current LED Driver
- Dimmable via 1 ... 10 V interface
- Dimming range 10-100 \% (Depending on load, for details refer to chapter 4.7 Dimming in data sheet.)
- For luminaires of protection class I and protection class II
- Adjustable output current between 250 and 550 mA via ready2mains Programmer or I-SELECT 2 plugs
- Max. output power 75 W
- Up to 94 \% efficiency
- Nominal lifetime up to $100,000 \mathrm{~h}$
- 5 years guarantee (conditions at www.tridonic.com)


## Housing properties

- Low-profile metal casing with white cover
- Type of protection IP20


## Interfaces

- ready2mains configuration
- 1 ... 10 V dimming interface
- Terminal blocks: $0^{\circ}$ push terminals


## Functions

- Adjustable output current in 1-mA-steps (ready2mains, I-SELECT 2)
- Dimmable via 1 ... 10 V interface
- Protective features (overtemperature, short-circuit, overload, no-load, input voltage range)
- Intelligent Voltage Guard (overvoltage and undervoltage monitoring)
- Suitable for emergency lighting systems acc. to EN 50172


## Benefits

- Application-oriented operating window for maximum compatibility
- Best energy savings due to high efficiency and dimming via
$1 . . . .10 \mathrm{~V}$ interface
- Flexible configuration via ready2mains and I-SELECT 2
- Reliability proven by lifetime up to $100,000 \mathrm{~h}$ and

5 years guarantee

## Typical applications

- For linear/area lighting in office applications


Driver LC 75W 250-550mA 1-10V Ip EXC
excite 1-10 $V$ non-SELV series


Ordering data

| Type | Article <br> number | Packaging <br> carton | Packaging <br> pallet | Weight per pc. |
| :--- | :--- | :--- | :--- | :--- |
| LC 75W 250-550mA 1-10V Ip EXC | $\mathbf{2 8 0 0 1 9 8 2}$ | $10 \mathrm{pc}(\mathrm{s})$. | $960 \mathrm{pc}(\mathrm{s})$. | 0.189 kg |

Linear dimming

## Specific technical data

| Type | Output current ${ }^{\text {( }}$ (6) | Min. forward voltage | Max. forward voltage | Max. output power | Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | Typ. current consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | Max. casing temperature tc | Ambient temperature ta max. | I-SELECT 2 <br> resistor value ${ }^{\text {(5) }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 250 mA | 50 V | 220.0 V | 55.0 W | 58.2 W | 259 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | open |
|  | 275 mA | 50 V | 220.0 V | 60.5 W | 64.0 W | 285 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | $18.18 \mathrm{k} \Omega$ |
|  | 300 mA | 50 V | 220.0 V | 66.0 W | 69.8 W | 310 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | $16.67 \mathrm{k} \Omega$ |
|  | 325 mA | 50 V | 220.0 V | 71.5 W | 75.6 W | 335 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | $15.38 \mathrm{k} \Omega$ |
|  | 350 mA | 50 V | 214.3 V | 75.0 W | 79.3 W | 351 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | $14.29 \mathrm{k} \Omega$ |
|  | 375 mA | 50 V | 200.0 V | 75.0 W | 79.5 W | 351 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | $13.33 \mathrm{k} \Omega$ |
| LC 75W $\mathbf{2 5 0 - 5 5 0 m A 1 0 1 0 V ~ I p ~ E X C ~}$ | 400 mA | 50 V | 187.5 V | 75.0 W | 79.5 W | 352 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | $12.50 \mathrm{k} \Omega$ |
|  | 425 mA | 50 V | 176.5 V | 75.0 W | 79.5 W | 352 mA | $75^{\circ} \mathrm{C}$ | $-25 \ldots+50^{\circ} \mathrm{C}$ | $11.76 \mathrm{k} \Omega$ |
|  | 450 mA | 50 V | 166.7 V | 75.0 W | 79.8 W | 353 mA | $75^{\circ} \mathrm{C}$ | $-25 \ldots+50^{\circ} \mathrm{C}$ | $11.11 \mathrm{k} \Omega$ |
|  | 475 mA | 50 V | 157.9 V | 75.0 W | 80.0 W | 354 mA | $75^{\circ} \mathrm{C}$ | $-25 . . .+50^{\circ} \mathrm{C}$ | $10.53 \mathrm{k} \Omega$ |
|  | 500 mA | 50 V | 150.0 V | 75.0 W | 80.1 W | 354 mA | $75^{\circ} \mathrm{C}$ | $-25 \ldots+50^{\circ} \mathrm{C}$ | $10.00 \mathrm{k} \Omega$ |
|  | 525 mA | 50 V | 142.9 V | 75.0 W | 80.2 W | 354 mA | $75^{\circ} \mathrm{C}$ | $-25 \ldots+50^{\circ} \mathrm{C}$ | $9.52 \mathrm{k} \Omega$ |
|  | 550 mA | 50 V | 136.4 V | 75.0 W | 80.4 W | 356 mA | $75^{\circ} \mathrm{C}$ | $-25 \ldots+50^{\circ} \mathrm{C}$ | short circuit ( $0 \Omega$ ) |

[^0]${ }^{2}$ (2) Depending on the selected output current.
${ }^{3}$ (3) The min. achievable dimming level depends on the connected load. For details refer to chapter 4.7 Dimming in data sheet.
(4) The table only lists a number of possible operating points but does not cover each single point. The output current can be set within the total value range in 1 -mA-steps.
${ }^{\text {© }}$ Not compatible with I-SELECT (generation 1). Calculated resistor value
${ }^{\text {© }}$ Output current is mean value.
${ }^{(8)}$ Valid for immediate change of power supply type otherwise the starting time is valid
(8) Valid for Drivers with „DC new" on the label. For old version typ. current ( $220 \mathrm{~V}, 0 \mathrm{~Hz}$, full load, $50 \%$ dimming level) is 180 mA .

## Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver featuring I-SELECT 2 interface; not compatible with I-SELECT (generation 1)
- Resistor is base insulated
- Resistor power 0.25 W
- Current tolerance $\pm 2 \%$ to nominal current value
- Compatible with LED Driver series PRE and EXC


## Example of calculation

- $R[k \Omega]=5 \mathrm{~V} / \mathrm{I}$ _out $[\mathrm{mA}] \times 1000$
- E96 resistor value used
- Resistor value tolerance $\leq 1 \%$; resistor power $\geq 0.1 \mathrm{~W}$;
base insulation necessary
- When using a resistor value beyond the specified range, the output current will automatically be set to the minimum value (resistor value too big), respectively to the maximum value (resistor value too small)


Ordering data

| Type | Article <br> number | Colour Marking | Current | Resistor <br> value | Packaging <br> bag | Weight <br> per pc. |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I-SELECT 2 PLUG 250MA BL | $\mathbf{2 8 0 0 1 1 0 6}$ | Blue | 0250 mA | 250 mA | $20.00 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 275MA BL | $\mathbf{2 8 0 0 1 1 0 7}$ | Blue | 0275 mA | 275 mA | $18.20 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 300MA BL | $\mathbf{2 8 0 0 1 1 0 8}$ | Blue | 0300 mA | 300 mA | $16.50 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 325MA BL | $\mathbf{2 8 0 0 1 1 0 9}$ | Blue | 0325 mA | 325 mA | $15.40 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 350MA BL | $\mathbf{2 8 0 0 1 1 1 0}$ | Blue | 0350 mA | 350 mA | $14.30 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 375MA BL | $\mathbf{2 8 0 0 1 1 1 1}$ | Blue | 0375 mA | 375 mA | $13.30 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 400MA BL | $\mathbf{2 8 0 0 1 1 1 2}$ | Blue | 0400 mA | 400 mA | $12.40 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 425MA BL | $\mathbf{2 8 0 0 1 2 5 1}$ | Blue | 0425 mA | 425 mA | $11.80 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 450MA BL | $\mathbf{2 8 0 0 1 1 1 3}$ | Blue | 0450 mA | 450 mA | 11.00 kg | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 475MA BL | $\mathbf{2 8 0 0 1 2 5 2}$ | Blue | 0475 mA | 475 mA | $10.50 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 500MA BL | $\mathbf{2 8 0 0 1 1 1 4}$ | Blue | 0500 mA | 500 mA | $10.00 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 525MA BL | $\mathbf{2 8 0 0 1 9 6 0}$ | Blue | 0525 mA | 525 mA | $9.53 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 550MA BL | $\mathbf{2 8 0 0 1 1 1 5}$ | Blue | 0550 mA | 550 mA | $9.09 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG MAX BL | $\mathbf{2 8 0 0 1 0 9 9}$ | Blue | MAX | MAX | $0.00 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |

## 1. Standards

EN 55015
EN 60929 Annex E
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 62384
EN 61547
According to EN 50172 for use in central battery systems
According to EN 60598-2-22 suitable for emergency lighting installations

## 2. Thermal details and lifetime

### 2.1 Expected lifetime

Expected lifetime

| Type | Output current | ta | $\mathbf{4 0}^{\circ} \mathrm{C}$ | $\mathbf{5 0}^{\circ} \mathbf{C}$ |
| :--- | :---: | :--- | :---: | :---: |
| LC 75W 250-550mA 1-10V Ip EXC | $250-550 \mathrm{~mA}$ | tc | $65^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ |
|  |  | Lifetime | $>100,000 \mathrm{~h}$ | $50,000 \mathrm{~h}$ |

The LED Driver is designed for a lifetime stated above under reference conditions and with a failure probability of less than $10 \%$.

The relation of tc to ta temperature depends also on the luminaire design.
If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical
components (e.g. ELCAP) measured. Detailed information on request.

## 3. Installation / wiring

### 3.1 Circuit diagram



### 3.2 Wiring type and cross section

Solid wire with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8-9 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of terminals.

LED module/LED Driver/supply
wire preparation:
$0.5-1.5 \mathrm{~mm}^{2}$

3.3 Loose wiring


Loosen wire through twisting
and pulling or using a $\varnothing 1 \mathrm{~mm}$
release tool

### 3.4 Wiring guidelines

- Run the secondary lines separately from the mains connections and lines to achieve good EMC performance.
- The max. secondary cable length is 2 m ( 4 m circuit).
- For good EMC performance, keep the LED wiring as short as possible
- Secondary switching is not permitted.
- The LED Driver has no inverse-polarity protection on the secondary side. Wrong polarity can damage LED modules with no inverse-polarity protection.
- Wrong wiring of the LED Driver can lead to malfunction or irreparable damage.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).


### 3.5 Hot plug-in

Hot plug-in is not supported due to residual output voltage of $>0 \mathrm{~V}$. If a LED load is connected, the device has to be restarted before the output will be activated again.
This can be done via mains reset or via interface ready 2 mains.

### 3.6 Earth connection

The earth connection is conducted as protection earth (PE). If the LED Driver will be earthed, protection earth (PE) has to be used. There is no earth connection required for the functionality of the LED Driver. Earth connection is recommended to improve following behaviour:

- Electromagnetic interferences (EMI)
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED Driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

### 3.7 I-SELECT 2 resistors connected via cable

For details see:
http://www.tridonic.com/com/en/download/technical/LCA_PRE_LC_EXC_ProductManual_en.pdf.

## 4. Electrical values

### 4.1 Operating window




Linear dimming

### 4.5 Maximum loading of automatic circuit breakers in relation to inrush current

| Automatic circuit breaker type | C10 | C13 | C16 | C20 | B10 | B13 | B16 | B20 | Inrush current |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installation $\varnothing$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $I_{\text {max }}$ | time |
| LC 75W 250-550mA 1-10V Ip EXC | 10 | 21 | 26 | 25 | 10 | 13 | 16 | 21 | 25.8 A | 280 ¢ |

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.6 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

|  | THD | 3. | 5. | 7. | 9. | 11. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LC 75W 250-550mA 1-10V Ip EXC | $<7$ | $<7$ | $<2$ | $<3$ | $<2$ | $<2$ |

Acc. to 61000-3-2. Harmonics $<5 \mathrm{~mA}$ or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

### 4.7 Dimming

Dimming range 10 to 100\%
The minimum achievable dimming level depends on the connected load.
The operating window shows the minimum reachable power in dimmed state. For loads below the max. output power, the minimum dimming level can be higher.
To determine the minimum dimming level for a certain load carefully read the operating window.
For further information please refer to your Tridonic sales contact.

### 4.8 Dimming characteristics

Control input (1-10 V)

| Control input open | max. dimming level |
| :---: | :---: |
| Control input short-circuited | min. dimming level |
| Interface current range | 400-500 $\mu \mathrm{A}$ |
| Max. permitted input voltage | $\pm 16 \mathrm{~V}$ |
| Voltage range dimming | 1-10 V ${ }^{\text {® }}$ |
| Input voltage < 1 V | min. dimming level ${ }^{(1)}$ |
| Input voltage > 10 V | max. dimming level ${ }^{(1)}$ |

(1) See graph below (at full load):


## 5. Interfaces / communication

5.1 Control input ready2mains (L, N)

The digital ready2mains protocol is modulated onto the mains signal which is wired to the mains terminal ( L and N ).

## 6. Functions

### 6.1 Function: adjustable current

The output current of the LED Driver can be adjusted in a certain range. For adjustment there are two options available.

Option 1: I-SELECT 2
By inserting a suitable resistor or third party resistor into the I-SELECT 2 interface, the current value can be adjusted. The relationship between output current and resistor value can be found in the chapter "Accessories I-SELECT 2 Plugs".

Please note that the resistor values for I-SELECT 2 are not compatible with I-SELECT (generation 1). Installation of an incorrect resistor may cause irreparable damage to the LED module(s).

Resistors for the main output current values can be ordered from Tridonic (see accessories).

Option 2: ready2mains
Adjustment is done by the ready2mains Programmer and the corresponding configuration software (see ready2mains documentation).

Current adjustment can only be done five times over ready2mains. To program the LED Driver a connected load is necessary that is within the operating window of the LED Driver.

The priority for current adjustment methods is I-SELECT 2 followed by ready2mains (lowest priority).

## 6.2 ready 2 mains - configuration

The ready2mains interface enables the configuration of the mostly used parameters via the mains wiring.
In the case of EXC LED Driver, it is the LED output current as well as an optional lockbit to prevent any accidental configuration at a later stage.

The configuration is done via the ready2mains Programmer, either directly at the Programmer itself or via a respective software tool. For details on the configuration via ready2mains see the technical information of the Programmer and its tools.

### 6.3 Short-circuit behaviour

In case of a short-circuit at the LED output the LED output is switched off. After restart of the LED Driver the output will be activated again. The restart can either be done via mains reset or via interface ready2mains.

### 6.4 No-load operation

The LED Driver will not be damaged in no-load operation. The output will be deactivated and is therefore free of voltage. If a LED load is connected the device has to be restarted before the output will be activated again.

### 6.5 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED Driver turns off the LED output. After restart of the LED Driver the output will be activated again.
The restart can either be done via mains reset or via interface ready2mains.

### 6.6 Overtemperature protection

The LED Driver is protected against temporary thermal overheating. If the temperature limit is exceeded the output current of the LED module(s) is reduced. The temperature protection is activated above tc max. The activation temperature differs depending on the LED load. On DC operation this function is deactivated to fulfill emergency requirements.

### 6.7 DC emergency operation

The LED Driver is designed to operate on DC voltage and pulsed DC voltage. For a reliable operation, make sure that also in DC emergency operation the LED Driver is run within the specified conditions as stated in chapter "4.1 Operating window".

For a period of time there could be two different versions of this Driver on stock
Version with „DC new" on label:
Light output level in DC operation (EOF ${ }_{\mathrm{j}}$ ): $95 \%$ (cannot be adjusted) Version without „DC new" on label:
Light output level in DC operation (EOF ${ }_{\mathrm{j}}$ ): 50 \% (cannot be adjusted)
The voltage-dependent input current of Driver incl. LED module is depending on the used load.

The nominal voltage-dependent no-load current of Driver (without or defect LED module) is for:
AC: < 21 mA (at 230 V )
DC: < 7 mA (at $275-186 \mathrm{~V}, 0 \mathrm{~Hz}$ )

### 6.8 Intelligent Voltage Guard

Intelligent Voltage Guard is the name of the electronic monitoring of the mains voltage. It immediately shows if the mains voltage rises above certain thresholds. Measures can then be taken quickly to prevent damage to the LED Driver.

- If the mains voltage rises above approx. 280 Vrms (voltage depends on the LED Driver type), the LED light starts flashing on and off.
- To avoid a damage of the LED Driver the mains supply has to be switched off at this signal.


## 7. Miscellaneous

### 7.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V Dc for one second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500$ V $\operatorname{cc}$ ). To avoid damage to the electronic devices this test must not be conducted.

### 7.2 Conditions of use and storage

Humidity:

Storage temperature:
$5 \%$ up to max. $85 \%$,
not condensed
(max. 56 days/year at $85 \%$ )
$-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be acclimatised to the specified temperature range (ta) before they can be operated.

The LED Driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

### 7.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.
The actually achieved number of switching cycles is significantly higher.

### 7.4 Additional information

Additional technical information at www.tridonic.com $\rightarrow$ Technical Data

Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Tridonic manufacturer:
Other Similar products are found below :
PIFC-K250F PITB-K222A AC-A60VD24H2.5 ALD-514012PJ134 LB240S24KH PDA006A-700B ESS015W-1000-12 EUG-200S210DT ESS030W-0900-32 BPOXL 4-12-035 ESS010W-0180-42 ESS010W-0350-24 ESS010W-0200-42 ESM060W-1400-42 PDA080B-1A0G ESS010W-0500-12 PDA150B-S1A5G SLM140W-1.05-130-ZA ESS015W-0700-18 EUD-150S350DVA LWA320-C420-ARK-B HVG-24048AB HVG-320-36AB HVG-320-54AB DAL50W-0850-56-T DAL30W-0600-42-T HVG-320-48AB CNB50W-1200-42-CAS CNB30W-0600-42-CAS 87500757 I-SELECT 2 PLUG 900MA BL I-SELECT 2 PLUG 1200MA BL LCU 48V 75W DC-STR FO I-SELECT 2 PLUG 200MA BL I-SELECT 2 PLUG 525MA BL LC 45 W 500-1400 MA FLEXC SC EXC I-SELECT 2 PLUG 325MA BL I-SELECT 2 PLUG 1500MA BL I-SELECT 2 PLUG 1600MA BL LC 50/200-350/170 FLEXCC LP SNC3 LCO 14/100-500/38 O4A NF C EXC3 LC 28W 300700MA 42 FLEXC NF SC EXC3 LC 44/1050/42 FIXC SRL ADV2 LCA 60W 900-1750MA ONE4ALL C PRE LC 8/180/44 FIXC SR SNC2 LC 60W 900-1750MA FLEXC SR EXC LC 19/200-350/54 FLEXC LP SNC4 BXDR-PS-75BS-E116D-01-A LC 30/500/54 FIXC SR SNC2 LCA 60W 24V ONE4ALL SC PRE SP


[^0]:    ${ }^{1}$ Valid at $100 \%$ dimming level.

