Driver LCI 100 W 1400/1750/2100 mA TEC C

TEC series

Product description

- Fixed output built-in LED driver
- Constant current LED driver
- Output current 1,400, 1,750 or 2,100 mA
- Max. output power 100 W
- Nominal life-time up to 50,000 h
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- 5-year guarantee (conditions at www.tridonic.com)

Housing properties

- Casing: polycarbonat, white
- Brush-coated for higher protection against humidity
- Type of protection IP20

Functions

- Overtemperature protection
- Overload protection
- Short-circuit protection
- No-load protection
- Burst protection voltage up to 2 kV
- Surge protection voltage up to 2 kV (L to N)
- Surge protection voltage up to 4 kV (L/N to earth)

\rightarrow

Standards, page 3
Wiring diagrams and installation examples, page 4

Driver LCI 100 W 1400/1750/2100 mA TEC C
TEC series

Technical data

Rated supply voltage	$220-240 \mathrm{~V}$
AC voltage range	$198-264 \mathrm{~V}$
Current at 50 Hz 230 V	0.47 A
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	$300 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~h}$
Max. input power	115 W
Output power range	$50-100 \mathrm{~W}$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<10 \%$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, min. load)	$<15 \%$
Output current tolerance ${ }^{\text {® }}$	$\pm 7.5 \%$
Typ. current ripple (at 230 V, 50 Hz, full load)	$<3 \%$
Output P CM (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta	$-25 \ldots+60^{\circ} \mathrm{C}$
Ambient temperature ta (at life-time $50,000 \mathrm{~h})$	$60{ }^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Life-time	up to $50,000 \mathrm{~h}$
Guarantee (conditions at www.tridonic.com)	5 years
Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	$140 \times 100 \times 30 \mathrm{~mm}$

Ordering data

Type	Article number $^{(3)}$	Packaging, carton	Packaging, low volume	Packaging, high volume	Weight per pc.
LCI 100W 1400mA TEC C	$\mathbf{8 7 5 0 0 2 6 7}$	$10 \mathrm{pc}(\mathrm{s})$.	$240 \mathrm{pc}(\mathrm{s})$.	$1,200 \mathrm{pc}(\mathrm{s})$.	0.274 kg
LCI 100W 1750mA TEC C	$\mathbf{8 7 5 0 0 2 6 8}$	$10 \mathrm{pc}(\mathrm{s})$.	$240 \mathrm{pc}(\mathrm{s})$.	$1,200 \mathrm{pc}(\mathrm{s})$.	0.276 kg
LCI 100W 2100mA TEC C	$\mathbf{8 7 5 0 0 2 6 9}$	$10 \mathrm{pc}(\mathrm{s})$.	$240 \mathrm{pc}(\mathrm{s})$.	$1,200 \mathrm{pc}(\mathrm{s})$.	0.276 kg

${ }^{(3)}$ Article LCI 100W 1750 mA TEC C (87500268) has the KC approval mark.

Type	Output current ${ }^{(2)}$	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\begin{gathered} \lambda \text { at } \\ \text { full load }{ }^{\oplus} \end{gathered}$	Efficiency at full load ${ }^{(1)}$	$\begin{gathered} \lambda \text { at } \\ \text { min. load }{ }^{\oplus} \end{gathered}$	Efficiency at min. load ${ }^{\left({ }^{(}\right.}$	Min. forward voltage ${ }^{\text {© }}$	Max. forward voltage ${ }^{\text {© }}$	Max. output voltage	Max. peak output current ${ }^{\oplus}$	Max. casing temperature tc
LCI 100W 1400mA TEC C	$1,400 \mathrm{~mA}$	106.0 W	0.98	94.0 \%	0.93	90%	35.5 V	71.5 V	76.5 V	2,100 mA	$80^{\circ} \mathrm{C}$
LCI 100W 1750mA TEC C	1,750 mA	106.0 W	0.99	93.5 \%	0.95	90%	28.5 V	58.0 V	62.0 V	2,625 mA	$80^{\circ} \mathrm{C}$
LCI 100W 2100mA TEC C	2,100 mA	106.5 W	0.99	93.5 \%	0.94	89 \%	23.5 V	47.5 V	50.5 V	3,150 mA	$85^{\circ} \mathrm{C}$

[^0]
Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384

Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver reduces the LED output current. After elimination of the overload the nominal operation is restored automatically.

Overtemperature protection

The LED driver is protected against temporary thermal overheating. If the temperature limit is exceeded, the unit shuts down itself and then turns on when it cools down. After the elimination of over temperature fault, the nominal operation is restored automatically. The temperature protection is activated typically at $7{ }^{\circ} \mathrm{C}$ above tc max.

Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver will latch-up. The LED driver will recover itself when the short-circuit fault is removed and the AC is recycled (turn off the AC for longer than 0.5 s and then turn on).

No-load operation

The LED driver works in constant voltage mode. In no-load operation the output voltage will not exceed the specified max. output voltage (no-load voltage, refer to page 1).

Conditions of use and storage

Humidity:	5% up to max. 95%, not condensed (max. 56 days/year at 95%)
Storage temperature:	$-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

Glow-wire test

according to EN 61347-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

Type	ta	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
LCI 100W 1400mA TEC C	tc	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	x
	Life-time	100,000 h	80,000 h	50,000 h	X
LCI 100W 1750mA TEC C	tc	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	X
	Life-time	100,000 h	80,000 h	50,000 h	x
LCI 100W 2100mA TEC C	tc	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	x
	Life-time	100,000 h	80,000 h	50,000 h	\times

The LED drivers are designed for a life-time stated above under reference conditions and with a failure probability of less than 10%.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation Ø	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$I_{\text {max }}$	Time
LCI 100W 1400mA TEC C	8	10	14	15	4	5	7	8	57 A	230 \%
LCI 100W 1750mA TEC C	8	10	14	15	4	5	7	8	57 A	$230 \mu \mathrm{~s}$
LCI 100W 2100mA TEC C	8	10	14	15	4	5	7	8	57 A	$230 \mu \mathrm{~s}$

These are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S 200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.

Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5	7.	9.	11.
LCI 100W 1400mA TEC C	10	7	3	2	2	2
LCI 100W 1750mA TEC C	10	5	3	1	1	1
LCI 100W 2100mA TEC C	10	7	3	2	2	1

Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 500 V surge voltage.
Creepage distances and clearances must be maintained.

Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 10 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

Wiring type and cross section

The wiring can be stranded wires with ferrules or rigid wires with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$.
Strip 8.5 - 9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals (WAGO 250).
wire preparation:
$0.5-1.5 \mathrm{~mm}^{2}$

Wiring instructions

The secondary leads should be separated from the mains connections and wiring for good EMC performance.
Maximum lead length on secondary side is 2 m . For a good EMC performance keep the the LED wiring as short as possible.

Release of the wiring

Press down the "push button" and remove the cable from front.

Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED driver and other leads (ideally 5 - 10 cm distance)
- Max. length of output and I sel wires is 2 m .
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- The wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

Wiring diagram

220-240 V
$50 / 60 \mathrm{~Hz}$

Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for
1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dc). To avoid damage to the electronic devices this test must not be conducted.

Conditions of use

The LED driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

Diagrams LCI 100W 1,400mA TEC C

Efficiency vs Load

THD vs Load

Input power vs load

Diagrams LCI 100W 1,750mA TEC C

Efficiency vs Load

THD vs Load

Input power vs load

Diagrams LCI 100W 2,100mA TEC C

Efficiency vs Load

THD vs Load

Input power vs load

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Power Supplies category:
Click to view products by Tridonic manufacturer:
Other Similar products are found below :
ESS015W-1000-12 PDA-WIFI PIFC-K250F PITB-K222A ALD-514012PJ134 LB240S24KH LMH020-SPLC-0000-0000001 795347953 EUG-200S210DT ESS030W-1050-21 ESS030W-0900-32 BPOXL 4-12-035 ESS010W-0350-24 ESM060W-1400-42 PDA080B-1A0G PDA150B-S1A5G SLM140W-1.05-130-ZA ESS015W-0700-18 EUD-150S350DVA LWA320-C420-ARK-B HVG-240-48AB HVG-32036AB HVG-320-54AB ELG-240-C1400AB EUK-150S105DV BXCS-12Z-N2P-B1-A BXPR-WN-01-A BXCS-12D-N2P-01-A BXCS-12W-N2P-01-A HLG-185H-C1400AB 980100001200394 LC 50W 200-350ML 170V FLEXC LP SNC4 LC 25W 200-350ML 70V FLEXC LP SNC4 LC 35W 200-350ML 121V FLEXC LP SNC4 HVG-320-48AB CNB50W-1200-42-CAS CNB30W-0600-42-CAS LCI 100W 1400MA TEC C LCI 100W 2100MA TEC C LCI 150W 1750MA TEC C LCI 150W 2100MA TEC C 87500284 LC 50W 1200MA FIXC SR $\underline{\text { SNC } 87500554} \underline{87500750} \underline{87500753} \underline{87500754} \underline{87500757} \underline{87500767}$

[^0]: (1) Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$.
 ${ }^{(2)}$ Output current is mean value.

