

Product Features

- 50 1000 MHz
- 19 dB Gain
- +22 dBm P1dB
- +42 dBm OIP3
- 1.9 dB Noise Figure
- Single Voltage Supply (+5 V)
- Lead-free/Green/RoHScompliant SOT-89 Package
- MTTF > 1000 years

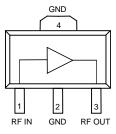
Applications

- High linearity and low-noise amplifier following a mixer
- High performance amplifier in IF path of TX/RX systems

Specifications⁽¹⁾

Parameter	Units	Min	Тур	Max
Operational Bandwidth	MHz	50		1000
Test Frequency	MHz		240	
Gain ⁽³⁾	dB		19	
Output P1dB	dBm		+22	
Output IP3 ⁽²⁾	dBm	+37	+42	
Supply Voltage	V		+5	
Operating Current Range	mA	120	150	180

 Test conditions : T = 25 °C, Vdd = +5 V, 50 Ω system.
30IP measured with two tones at an output power of +5 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.


Product Description

The AH31 is a high dynamic range amplifier in a low-cost surface-mount package. The combination of low noise figure, high gain, and high output IP3 is ideal as an IF amplifier for receiver and transmitter applications.

The device combines dependable performance with consistent quality to maintain MTTF values exceeding 1000 years at mounting temperatures of +85 °C and is available in the environmentally-friendly lead-free/green /RoHS-compliant SOT-89 package. All devices are 100% RF & DC tested.

The MMIC amplifier based on GaAs MESFET technology can be configured for IF and RF applications with various current and next generation wireless technologies.

Functional Diagram

Function	Pin No.
Input	1
Output/Bias	3
Ground	2,4

Typical Performance⁽³⁾

Parameter	Units		1	Гуріса	ıl	
Frequency	MHz	75	170	240	500	900
S21	dB	19.5	19.2	19.3	18.4	16.6
S11	dB	-21	-13	-19	-13	-14
S22	dB	-17	-14	-13	-9.2	-9
Output P1dB	dBm	+22	+21	+22	+21	+20
Output IP3	dBm	+42	+42	+42	+41	+41
Noise Figure	dB	2.6	2.3	2.2	1.9	2.2

3. Typical parameters reflect performance in an application circuit.

Absolute Maximum Rating

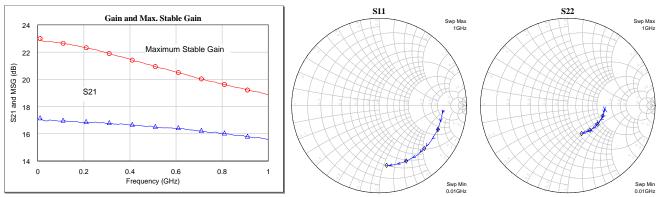
Parameter	Rating
Storage Temperature	-55 to +150 °C
DC Voltage	+6 V
RF Input Power (continuous)	4 dB above Input P1dB
Junction Temperature	+160 °C
Thermal Resistance, Rth	59 °C / W

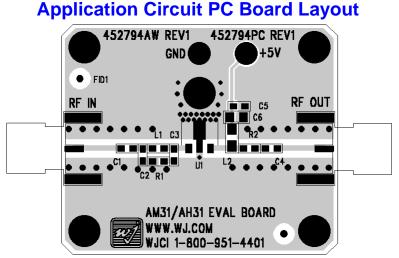
Ordering Information

Part No.	Description
AH31-G	High Dynamic Range IF Amplifier (lead-free/green/RoHS-compliant SOT-89 Pkg)
AH31-PCB75	65 – 85 MHz Fully Assembled Evaluation Board
AH31-PCB170	155 – 185 MHz Fully Assembled Evaluation Board
AH31-PCB240	220-260 MHz Fully Assembled Evaluation Board
AH31-PCB500	450-550 MHz Fully Assembled Evaluation Board

Operation of this device above any of these parameters may cause permanent damage.

Standard T/R size = 1000 pieces on a 7" reel.




Typical Device Data

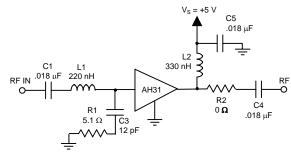
S-parameters (Vd = +5 V, Id = 150 mA, unmatched 50 Ω system).

Notes:

- Measurements are shown for an unmatched packaged device with the data being de-embedded to the device leads.
- The amplifier requires a matching network at the input for proper operation. The amplifier is intrinsically well matched at the output and ideally should "look" into 50 Ω . Any deviation from this can affect the linearity IP3 performance for the device.
- For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the dashed red line.
- The impedance plots are shown from 250 1000 MHz, with markers placed at 0.25 1.0 GHz in 0.25 GHz increments.

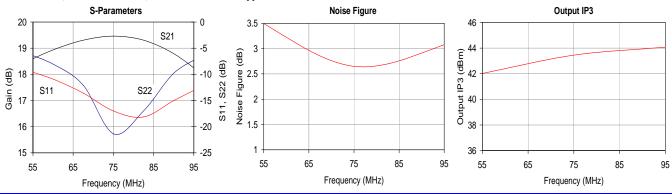
Circuit Board Material: .014" FR-4, 4 layers (other layers added for rigidity), .062" total thickness, 1 oz copper Microstrip line details: width = .024", spacing = .036"

Typical Device Data


S-Parameters (V	$I_{\rm D} = +5 \text{ V}, I_{\rm D} =$	150 mA, T = 25	°C, calibrated	to device leads))			
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-2.72	-5.46	17.01	175.91	-28.54	6.89	-7.44	-5.46
100	-2.77	-9.52	16.94	172.89	-28.42	8.53	-7.56	-7.93
200	-2.81	-18.01	16.86	166.99	-27.86	14.09	-7.59	-13.42
300	-2.87	-26.32	16.74	161.33	-27.14	18.38	-7.63	-19.94
400	-2.87	-35.19	16.64	155.16	-26.32	21.01	-7.83	-26.57
500	-2.95	-43.58	16.50	149.45	-25.45	22.42	-7.92	-32.04
600	-2.91	-51.71	16.40	143.72	-24.66	22.73	-8.00	-38.12
700	-2.99	-60.03	16.21	138.07	-23.89	21.29	-8.31	-45.01
800	-3.03	-67.73	16.05	132.16	-23.27	19.94	-8.46	-50.89
900	-3.14	-75.45	15.81	126.99	-22.71	17.74	-8.77	-57.30
1000	-3.22	-82.88	15.55	121.64	-22.17	15.73	-8.95	-63.63

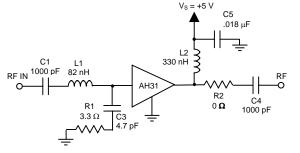
Application Circuit: 65 – 85 MHz (AH31-PCB75)

Typical Performance		
Frequency	75 MHz	
Gain	19.5 dB	
S11	-21 dB	
S22	-17 dB	
Output P1dB	+22 dBm	
Output IP3	+42 dBm	
Noise Figure	2.6 dB	
Bias	+5 V @ 150 mA	


Notes:

1. The amplifier should be connected directly to a +5 V regulator; no dropping resistor is required.

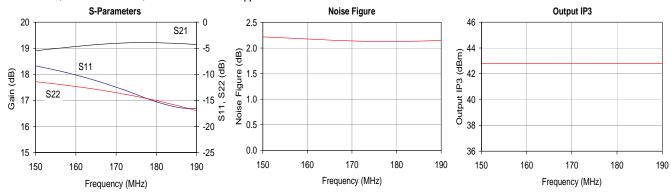
2. If no DC signal is present at the input (pin 1), C1 can be removed. The gate is internally grounded in the amplifier.


3. R2 is used as a placeholder for a different application circuit. It can be removed from the circuit.

4. C2 (from the silkscreen) is not utilized in this application circuit.

Application Circuit: 155 – 185 MHz (AH31-PCB170)

Typical Performance		
Frequency	170 MHz	
Gain	19.2 dB	
S11	-13 dB	
S22	-14 dB	
Output P1dB	+21 dBm	
Output IP3	+42 dBm	
Noise Figure	2.3 dB	
Bias	+5 V @ 150 mA	

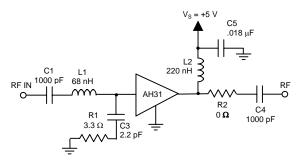

Notes:

1. The amplifier should be connected directly to a +5 V regulator; no dropping resistor is required.

2. If no DC signal is present at the input (pin 1), C1 can be removed. The gate is internally grounded in the amplifier.

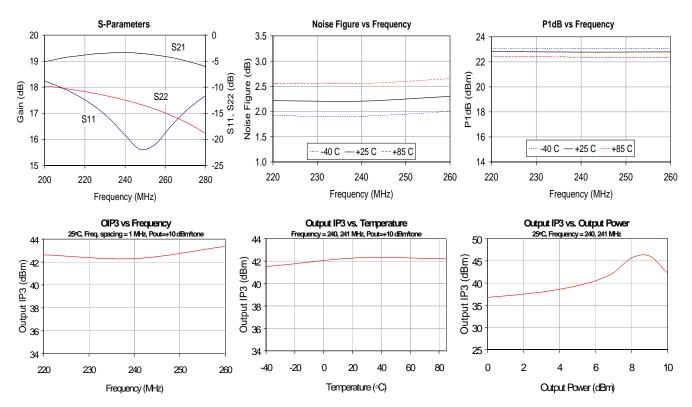
3. R2 is used as a placeholder for a different application circuit. It can be removed from the circuit.

4. C2 (from the silkscreen) is not utilized in this application circuit.



Application Circuit: 220 – 260 MHz (AH31-PCB240)

Typical Performance		
Frequency	_240 MHz	
Gain	19.3 dB	
S11	-19 dB	
S22	-12.5 dB	
Output P1dB	+22 dBm	
Output IP3	+42 dBm	
Noise Figure	2.2 dB	
Bias	+5 V @ 150 mA	

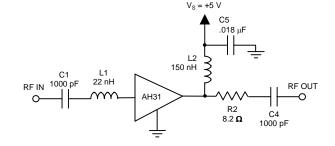

Notes:

1. The amplifier should be connected directly to a +5 V regulator; no dropping resistor is required.

2. If no DC signal is present at the input (pin 1), C1 can be removed. The gate is internally grounded in the amplifier.

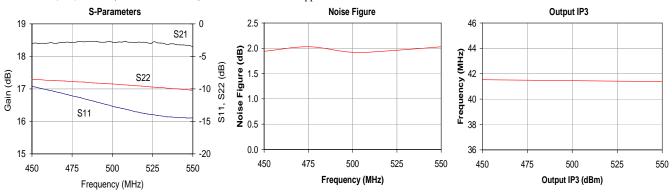
3. R2 is used as a placeholder for a different application circuit. It can be removed from the circuit.

4. C2 (from the silkscreen) is not utilized in this application circuit.



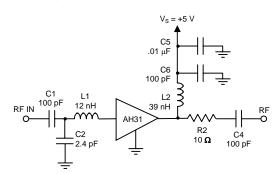
Application Circuit: 450 – 550 MHz (AH31-PCB500)

Typical Performance		
Frequency	500 MHz	
Gain	18.4 dB	
S11	-12.7 dB	
S22	-9.2 dB	
Output P1dB	+21 dBm	
Output IP3	+41 dBm	
Noise Figure	1.9 dB	
Bias	+5 V @ 150 mA	



Notes:

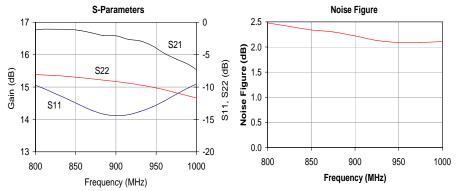
1. The amplifier should be connected directly to a +5 V regulator; no dropping resistor is required.


2. If no DC signal is present at the input (pin 1), C1 can be removed. The gate is internally grounded in the amplifier.

3. R1, C2, and C3 (from the silkscreen) are not utilized in this application circuit.

Reference Design: 900 MHz

Typical Performance		
Frequency	900 MHz	
S21 - Gain	16.6 dB	
S11	-14 dB	
S22	-9 dB	
Output P1dB	+20 dBm	
Output IP3	+41 dBm	
Noise Figure	2.2 dB	
Bias	5 V @ 150 mA	

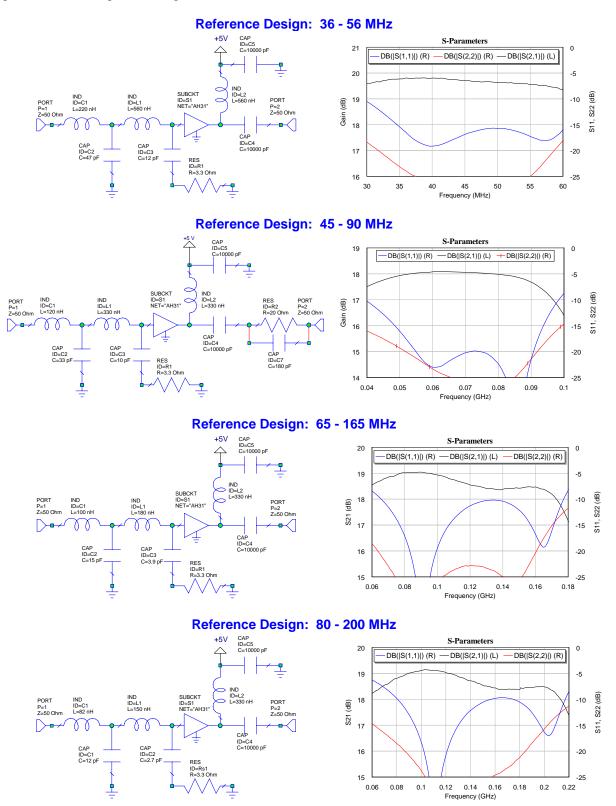


Notes:

1. The amplifier should be connected directly to a +5 V regulator; no dropping resistor is required.

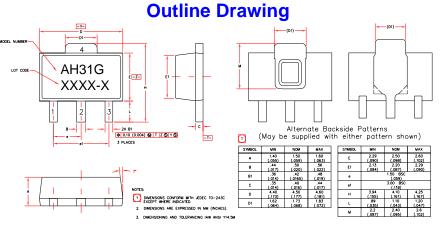
2. If no DC signal is present at the input (pin 1), C1 can be removed. The gate is internally grounded in the amplifier.

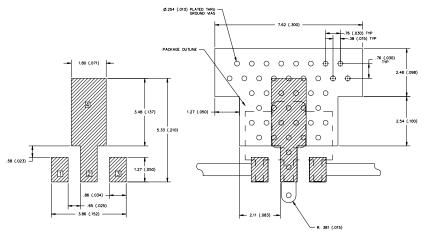
3. R1 and C3 (from the silkscreen) are not utilized in this application circuit.



Broader Bandwidth Reference Designs

The AH31 can be designed to achieve good performance over a broader frequency range (around one octave) by using an additional L-C matching network at the input. An equalization R-C network can also be added at the output to slightly flatten out the typical downward slope of the amplifier circuit.





AH31-G (Green / Lead-free SOT-89 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

Land Pattern

Product Marking

The AH31-G will be marked with an "AH31G" designator. An alphanumeric lot code ("XXXX-X") is also marked below the part designator on the top surface of the package. The obsolete tin-lead package is marked with an "AH31" designator followed by an alphanumeric lot code.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating:	Class 1B
Value:	Passes ≥ 500V to <1000V
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114
ESD Rating:	Class IV
Value:	Passes ≥ 1000V to <2000V
Test:	Charged Device Model (CDM)

Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by TriQuint Semiconductor manufacturer:

Other Similar products are found below :

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL RF2373TR7 HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA1031 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016