ECG040B InGaP HBT Gain Block

Product Features

- DC 4 GHz
- +18.5 dBm P1dB at 1 GHz
- +35 dBm OIP3 at 1 GHz
- 16 dB Gain at 1 GHz
- 5.5 dB Noise Figure
- Available in Lead-free / green SOT-89 Package Style
- Internally matched to 50 $\boldsymbol{\Omega}$

Applications

- Mobile Infrastructure
- CATV / FTTX
- W-LAN / ISM
- RFID
- WiMAX / WiBro

Specifications (1)

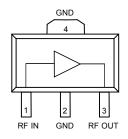
Parameter	Units	Min	Тур	Max
Operational Bandwidth	MHz	DC		4000
Test Frequency	MHz		1000	
Gain	dB		15.8	
Output P1dB	dBm		+18.5	
Output IP3 ⁽²⁾	dBm		+35	
Test Frequency	MHz		2000	
Gain	dB	12.8	15.3	17.5
Input Return Loss	dB		22	
Output Return Loss	dB		16	
Output P1dB	dBm		+18	
Output IP3 ⁽²⁾	dBm		+35	
Noise Figure	dB		5.5	
Device Voltage	V		4.8	
Device Current	mA		70	

Test conditions unless otherwise noted: 25 °C, Supply Voltage = +6 V, Rbias = 16 Ω, 50 Ω System.
30IP measured with two tones at an output power of +5 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.

Absolute Maximum Rating

Parameter	Rating
Storage Temperature	-65 to +150 °C
RF Input Power (continuous)	+12 dBm
Device Current	130 mA
Junction Temperature	+160 °C
Thermal Resistance, Rth	128 °C/W

Operation of this device above any of these parameters may cause permanent damage.


Product Description

The ECG040B is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1 GHz, the ECG040B typically provides 15.8 dB of gain, +35 dBm Output IP3, and +18.5 dBm P1dB.

The ECG040B consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is available in a lowcost, surface-mountable lead-free/green/RoHS-compliant SOT-89 package. All devices are 100% RF and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the ECG040B will work for other various applications within the DC to 4 GHz frequency range such as CATV and mobile wireless.

Functional Diagram

Function	Pin No.
Input	1
Output/Bias	3
Ground	2,4

Typical Performance⁽¹⁾

Parameter	Units		Тур	ical	
Frequency	MHz	500	900	1900	2140
S21	dB	16.0	15.8	15.3	15.1
S11	dB	-24	-24	-23	-21
S22	dB	-27	-23	-16	-16
Output P1dB	dBm	+18.5	+18.5	+18	+19
Output IP3 ⁽²⁾	dBm	+35.5	+35	+34.5	+30.5
Noise Figure	dB	4.6	5.5	5.8	3.8

Not Recommended For New Designs Recommended replacement parts:

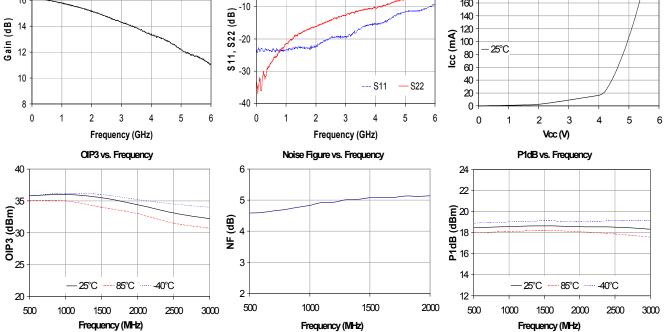
AG603-89G

Ordering Information

Part No.	Description
ECG004B-G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 package)

Standard T/R size = 1000 pieces on a 7" reel.

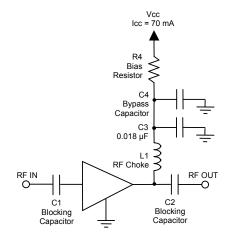
Specifications and information are subject to change without notice

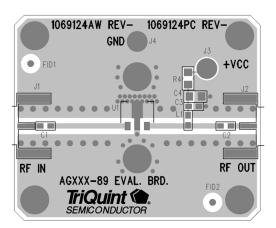

Typical Device RF Performance Supply Bias = +6 V, R_{bias} = 16 Ω , I_{cc} = 70 mA

Frequency	MHz	100	500	900	1900	2140	2400	3500
S21	dB	16.2	16.0	15.8	15.3	15.1	14.8	13.9
S11	dB	-23	-24	-24	-23	-21	-20	-17
S22	dB	-32	-27	-23	-16	-16	-15	-11
Output P1dB	dBm	+18.4	+18.5	+18	+18	+18	+18	+17.5
Output IP3	dBm	+35.6	+35.5	+35	+33.2	+32.9	+32.4	
Noise Figure	dB	4.6	4.7	4.9	5.1	5.3	5.4	

1. Test conditions: $T = 25 \circ C$, Supply Voltage = +6 V, Device Voltage = 4.8 V, Rbias = 16 Ω , Icc = 70 mA typical, 50 Ω System.

2. 30IP measured with two tones at an output power of +5 dBm/cme separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule. 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.


Gain **Return Loss** Icc vs. Vcc 18 0 200 180 16 160 -10 140



Recommended Application Circuit

Recommended Bias Resistor Values

Reference		Frequency (MHz)					
Designator	50	500	900	1900	2200	2500	3500
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH
C1, C2, C4	.018 µF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF

Recommended Component Values

1. The proper values for the components are dependent upon the intended frequency of operation.

2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 µF chip capacitor	0603
C4	Do Not Place	
R4	$16 \Omega 1\%$ tolerance	0805

Supply Voltage	R1 value	Size
6 V	17.1 ohms	0805
7 V	31.4 ohms	1210
8 V	46 ohms	1210
9 V	60 ohms	2010
10 V	74 ohms	2010
12 V	103 ohms	2512

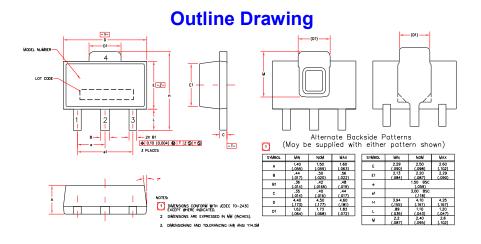
The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

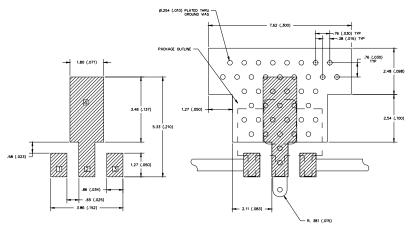
Typical Device S-Parameters

S-Parameters ($V_{device} = +4.8 \text{ V}$, $I_{CC} = 70 \text{ mA}$, T = 25 °C, calibrated to device leads)

	S22 (ang)
50 22.21 170.51 17.10 177.81 10.40 0.02 27.05	
50 -23.31 -179.51 16.19 177.81 -19.40 -0.03 -36.95 -	170.80
500 -23.69 170.90 16.04 158.74 -19.30 -5.83 -27.31 -	130.75
1000 -23.45 162.60 15.79 138.37 -19.12 -12.26 -21.40 -	141.51
1500 -22.70 156.61 15.50 118.53 -19.03 -19.16 -18.24 -	153.77
2000 -22.13 148.64 15.16 99.02 -18.71 -26.80 -16.09 -	175.02
2500 -19.60 139.22 14.76 79.46 -18.36 -32.98 -14.17	67.68
3000 -19.24 121.52 14.31 61.06 -18.13 -41.04 -12.61	52.88
3500 -16.99 115.00 13.86 41.97 -17.78 -51.05 -11.16	30.54
4000 -15.40 97.66 13.33 23.55 -17.23 -58.84 -10.31	15.55
4500 -13.81 84.99 12.88 4.82 -16.82 -68.93 -9.04	97.41
5000 -11.78 64.76 12.19 -13.55 -16.84 -79.74 -7.54	76.41
5500 -11.08 52.37 11.70 -30.90 -16.58 -89.82 -7.37	64.41
6000 -9.31 35.87 10.98 -50.95 -16.15 -102.41 -6.42	46.46

Device S-parameters are available for download off of the website at: http://www.triquint.com


Specifications and information are subject to change without notice



ECG040B-G Mechanical Information

This package is lead-free/Green/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes.

Land Pattern

Product Marking

The component will be marked with an "E040G" designator with an alphanumeric lot code on the top surface of the package. The obsolete tin-lead package is marked with an "E040" designator followed by an alphanumeric lot code; it may also have been marked with a "J" designator followed by a 3-digit numeric lot code.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating:Class 1AValue:Passes between 250 and 500VTest:Human Body Model (HBM)Standard:JEDEC Standard JESD22-A114

MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
 Add as much communication and the first of the thermal communication.
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by TriQuint Semiconductor manufacturer:

Other Similar products are found below :

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL RF2373TR7 HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA1031 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016