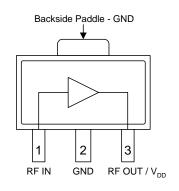


TAT7461 75 Ohm RF Amplifier 50 – 1000 MHz


Applications

- Distribution Amplifiers
- Multi Dwelling Units
- Drop Amplifiers
- Single Ended Gain Block

SOT-89 Package

Functional Block Diagram

Top View

Product Features

- 75 Ohm, 50-1000 MHz Bandwidth
- pHEMT Device Technology
- On-Chip Active Bias and Negative Feedback
- Low Noise: < 2.6 dB to 1000 MHz
- Low Distortion: CSO -72, CTB -88 dBc (at Pout = +26 dBmV/ch, 80 ch flat loading)
- 16.1 dB Typical Gain
- +39 dBm Typical OIP3
- +22 dBm Typical P1dB
- 2.3 dB Typical NF and < 2.6 dB up to 1000 MHz
- Unconditionally Stable
- Low Power Consumption: +5.0 V, 130 mA
- SOT-89 package

General Description

The TAT7461 is a 75 Ohm RF Amplifier designed for CATV applications to 1000 MHz. The balance of low noise and distortion provides an outstanding solution for drop and distribution amplifiers.

The TAT7461 is fabricated using 6-inch GaAs pHEMT technology to optimize performance and cost. On-chip negative feedback provides excellent gain and return loss stability. The TAT7461 also uses an on-chip active bias for consistent bias current and repeatable performance. Simple external tuning allows the TAT7461 to achieve excellent return loss.

Pin Configuration

Pin No.	Label
1	RF IN
2	GND
3	RF OUT / V _{DD}
Backside Paddle	GND

Ordering Information

Part No.	Description			
TAT7461	75 Ω pHEMT Amplifier			
TAT7461-EVB	50-1000 MHz Evaluation Board			
Standard T/R size = 1000 pieces on a 7" reel				

Absolute Maximum Ratings

Parameter	Rating
Operating Temperature	−65 to 85 °C
RF Input Power, CW, 75 Ω, T=25°C	+27 dBm
Supply Voltage (V _{DD})	+10.0 V

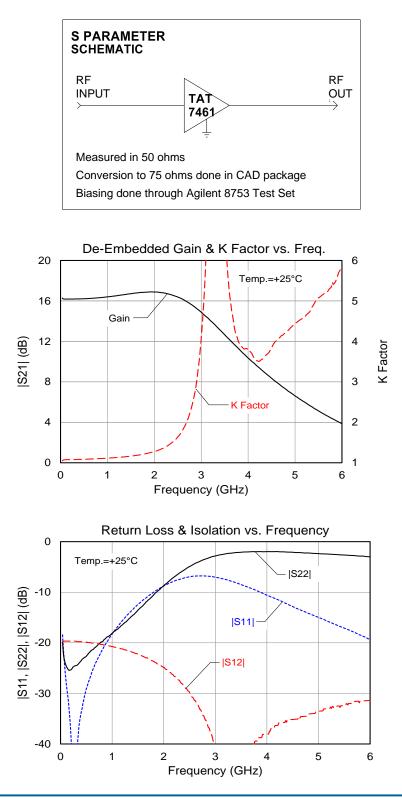
Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Vdd		+6.0		V
IDD	100	130	150	mA
TCASE	-40		+85	°C
Tj for >10 ⁶ hours MTTF			+150	°C

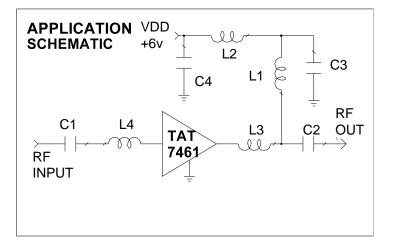
Electrical performance is measured under conditions noted in the electrical specifications table. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications


Test conditions unless otherwise noted: $V_{DD} = +6 \text{ V}$, Temp= +25 °C..

Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		50		1000	MHz
Gain			16.1		dB
Gain Flatness			±0.3		dB
Noise Figure			2.3		dB
Input Return Loss			23		dB
Output Return Loss			23		dB
CSO	+26 dBmV/ch at output, 80 ch. flat		-72		dBc
СТВ	+26 dBmV/ch at output, 80 ch. flat		-88		dBc
Output IP2	Pout = +5 dBm/tone, Δf = 1 MHz		+61		dBm
Output IP3	Pout = +5 dBm/tone, Δf = 1 MHz		+39		dBm
Supply Current		100	130	150	mA
Thermal Resistance, θ_{jc}	Module (junction to case)		42		°C/W

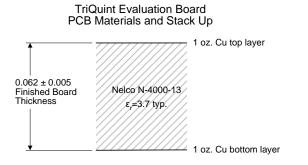
Device Characterization Data

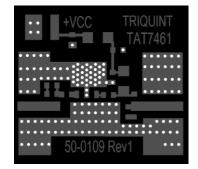

Test conditions unless otherwise stated: V_{DD} =+6V, I_{DD}=130 mA (typ.)Temp= +25°C..

TAT7461 75 Ohm RF Amplifier 50 – 1000 MHz

Application Schematic – TAT7461-EVB

Bill of Material – TAT7461-EVB

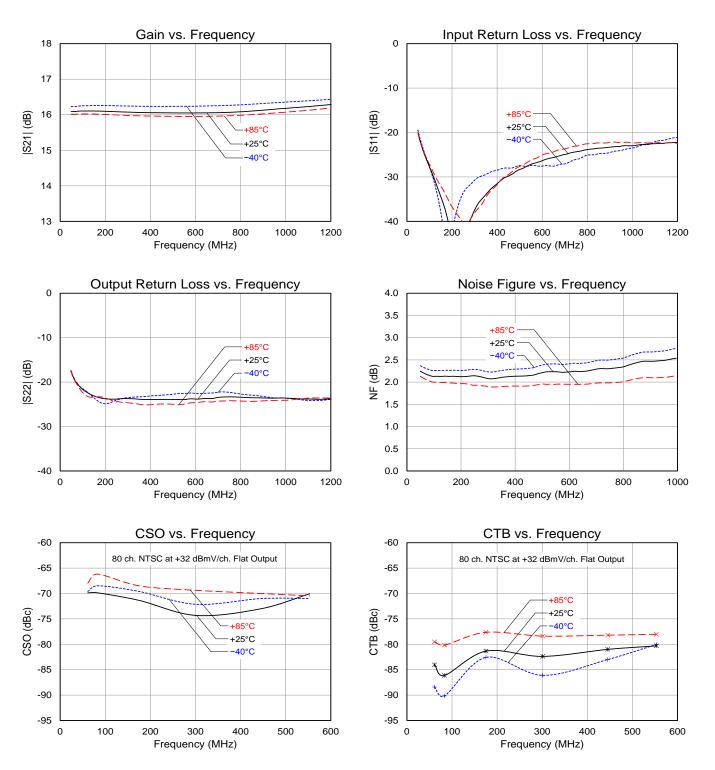

Ref. Des.	Value	Description	Manuf.	Part Number
U1	n/a	75 Ω High Linearity pHEMT Amplifier	TriQuint	TAT7461
L1, L2	880 nH	Chip Coil, Vertical Wire Wound Ferrite, 1206, 30%	Murata1	LQH31HNR88K
L3	5.1 nH	Ceramic Chip Ind., Wire-wound, 0402, 5 %	Coilcraft	0402CS-5N1XJLW
L4	2.7 nH	Ceramic Chip Ind., Wire-wound, 0402, 5 %	Coilcraft	0402CS-2N7XJLW
C1	1000 pF	Ceramic Chip Cap., 0402, 50 V, 10 %, X7R	AVX1	04025C102KAT2A
C2	120 pF	Ceramic Chip Cap., 0402, 50 V, 5 %, NPO	AVX1	04025A121JAT2A
C3, C4	0.01 uF	Ceramic Chip Cap., 0402, 16 V, 10 %, X7R	AVX1	0402YC103KAT
J1, J2		75 Ω F connector	Lighthorse	FSF55MGT-P-10A ⁽¹⁾


Notes:

1. Or equivalent

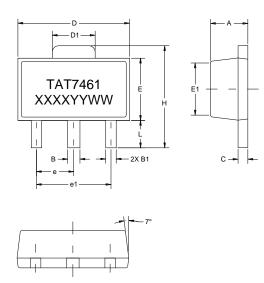
Evaluation Board PCB Information

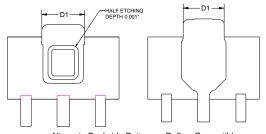
TriQuint PCB 50-0109 Material and Stack-up



Performance Plots – TAT7461-EVB

Test conditions unless otherwise stated: $V_{DD} = +6V$, $I_{DD} = 130$ mA (typ.)



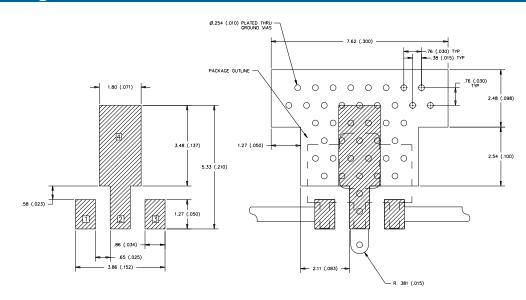


TAT7461 75 Ohm RF Amplifier 50 – 1000 MHz

Package Marking and Dimensions

Marking: Part number – TAT7461 Lot code –XXXXYYWW

Alternate Backside Patterns - Reflow Compatible (Part may be supplied with either pattern)

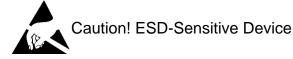

SYMBOL	MIN	TYP	MAX	SY№
A	1.40	1.50	1.60	F
	(.055)	(.059)	(.063)	
В	.44	.50	.56	E
	(.017)	(.020)	(.022)	
B1	.36	.42	.48	
	(.014)	(.0165)	(.019)	
С	.35	.40	.44	e
	(.014)	(.016)	(.017)	
D	4.40	4.50	4.60	ŀ
	(.173)	(.177)	(.181)	
D1	1.62	1.73	1.83	I
	(.064)	(.068)	(.072)	

SYMBOL	MIN	TYP	MAX
E	2.29	2.50	2.60
	(.090)	(.098)	(.102)
E1	2.13	2.20	2.29
	(.084)	(.087)	(.090)
е		1.50 BSC	
-		(.059)	
e1		3.00 BSC	
		(.118)	
н	3.94	4.10	4.25
	(.155)	(.161)	(.167)
L	.89	1.10	1.20
	(.035)	(.043)	(.047)

Notes:

1. All dimensions are in millimeters. Angles are in degrees.

PCB Mounting Pattern


Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation.
- 4. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 5. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Product Compliance Information

ESD Sensitivity Ratings

ESD Rating: Class 1A Value: ≥250 V to < 500 V Test: Human Body Model (HBM) Standard: ESDA/JEDEC Standard JS-001-2012

ESD Rating: Class C3 Value: Passes ≥ 1000 V Test: Charged Device Model (CDM) Standard: JEDEC Standard JESD22-C101F

MSL Rating

MSL Rating: Level 3 Test: 260°C convection reflow Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260°C maximum reflow temperature) and tin/lead (245°C maximum reflow temperature) soldering processes.

Contact plating: NiPdAu

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

 Web:
 www.triquint.com
 Tel:
 +1.503.615.9000

 Email:
 info-sales@triquint.com
 Fax:
 +1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@triquint.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by TriQuint Semiconductor manufacturer:

Other Similar products are found below :

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL RF2373TR7 HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA1031 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016 MMZ25332B4T1