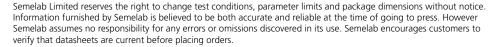
DUAL NPN SWITCHING TRANSISTORS

2N2369ADCSM

- Dual Silicon Planer Epitaxial NPN Transistors
- Hermetic Ceramic Surface Mount Package
- Designed For High Speed Switching Applications
- Screening Options Available



ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

			Each Side	Total Device	
V_{CBO}	Collector – Base Voltage		40V		
V_{CEO}	Collector – Emitter Voltage		15V		
V_{CES}	Collector – Emitter Voltage		40V		
V_{EBO}	Emitter – Base Voltage		4.5V		
IC	Continuous Collector Current		200mA		
P_{D}	Total Power Dissipation at	$T_A = 25^{\circ}C$	360mW	500mW	
		Derate Above 25°C	2.06mW/°C	2.86mW/°C	
P_{D}	Total Power Dissipation at	$T_{SP} = 125^{\circ}C$	360mW	500mW	
		Derate Above 125°C	4.80mW/°C	6.67mW/°C	
Тј	Junction Temperature Range	Range -65 to +200°C			
T _{stg}	Storage Temperature Range		-65 to +200°C		

THERMAL PROPERTIES

Symbols	Parameters	EachSide	Total Device
R _{0JA}	Thermal Resistance, Junction To Ambient	486°C/W	350°C/W
R _{OJSP}	Thermal Resistance, Junction To Solder Point	208.3°C/W	150°C/W

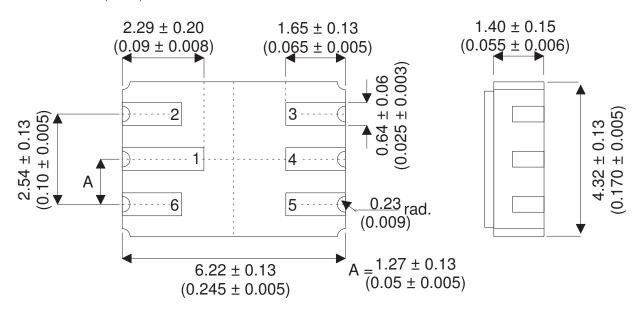
DUAL NPN SWITCHING TRANSISTORS 2N2369ADCSM

ELECTRICAL CHARACTERISTICS (Each Side , $T_A = 25$ °C unless otherwise stated)

Symbols	Parameters	Test Condit	ions	Min.	Тур	Мах.	Units
V _(BR) CEO ⁽¹⁾	Collector-Emitter Breakdown Voltage	I _C = 10mA	I _B = 0	15			V
I _{CES}	Collector-Cut-Off Current	V _{CE} = 20V	I _B = 0			0.4	
I _{CBO}	Collector-Cut-Off Current	V _{CB} = 40V	I _E = 0			10	
		V _{CB} = 32V	I _E = 0			0.2	
		V _{CB} = 20V	I _E = 0			30	
			$T_A = 150^{\circ}C^{(2)}$				μΑ
Inno	Emitter Cut Off Current	V _{EB} = 4.5V	I _C = 0			10	
I _{EBO}	Emitter-Cut-Off Current	V _{EB} = 4V	I _C = 0			0.25	
lerv	Collector Cut-Off Current	V _{CE} = 10V	$V_{BE} = -0.25V$			30	
ICEX			$T_A = 125^{\circ}C$				
	Forward-current transfer ratio	I _C = 10mA	V _{CE} = 0.35V	40		120	
		I _C = 30mA	V _{CE} = 0.4V	30		120	
h _{FE} ⁽¹⁾		I _C = 10mA	V _{CE} = 1.0V	40		120	
			T _A = -55°C	20			
		I _C = 100mA	V _{CE} = 1.0V	20		120	
	Collector-Emitter Saturation Voltage	I _C = 10mA	$I_B = 1.0 \text{mA}$			0.2	
V _{CE(sat)} ⁽¹⁾			T _A = 125°C			0.3	
VCE(sat)		I _C = 30mA	$I_B = 3mA$			0.25	
		I _C = 100mA	$I_B = 10mA$			0.45	
V _{BE(sat)} ⁽¹⁾		$I_C = 10mA$	$I_B = 1.0 \text{mA}$	0.7		0.85	V
	Base-Emitter Saturation Voltage		T _A = 125°C	0.59			
			T _A = -55°C			1.02	
		I _C = 30mA	I _B = 3mA			0.9	
		I _C = 100mA	$I_B = 10mA$	0.8		1.2	

- (1) Pulse Width \leq 300us, $\delta \leq$ 2%
- (2) By design only, not a production test.

DUAL NPN SWITCHING TRANSISTORS 2N2369ADCSM



DYNAMIC CHARACTERISTICS (Each Side , T_A = 25°C unless otherwise stated)

Symbols	Parameters	Test Conditions		Min.	Тур	Max.	Units
h _{fe}	Small signal forward-current	$I_C = 10mA$	V _{CE} = 10V	5		10	
т те і	transfer ratio	f = 100MHz				10	
C _{obo}	Output Capacitance	$V_{CB} = 5V$	I _E = 0			4	– pF
		f = 1.0MHz					
C _{ibo}	Input Capacitance	V _{EB} = 0.5V	I _C = 0		5	_	
		f = 1.0MHz				5	
t _s	Storage Time	$I_C = 10mA$	$I_{B1} = I_{B2} = 10 \text{mA}$			13	
t _{on}	Turn-On Time	I _C = 10mA	V _{CC} = 3V		12		
		$I_{B1} = 3mA$				12	ns
t _{off}	Turn-Off Time	I _C = 10mA	$V_{CC} = 3V$ $I_{B2} = -1.5$ mA		18		
		$I_{B1} = 3mA$	$I_{B2} = -1.5 \text{mA}$			10	

MECHANICAL DATA

Dimensions in mm (inches)

LCC2 (MO-041BB)

Underside View

Pad 4 - Collector 2 Pad 1 – Collector 1 Pad 2 – Base 1 Pad 5 – Emitter 2 Pad 3 - Base 2 Pad 6 - Emitter 1

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM
2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E
FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G
NTE101 NTE13 NTE15