
SILICON PNP TRANSISTOR

2N3963

- General Purpose PNP Silicon Transistor
- Low Power Amplifier Applications
- Hermetic TO18 Package
- Screening Options Available



ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise stated)

VCBO	Collector – Base Voltage		-80V
VCEO	Collector – Emitter Voltage		-80V
V_{EBO}	Emitter – Base Voltage		-6V
IC	Continuous Collector Current	-200mA	
P_{D}	Total Power Dissipation at	$T_A = 25^{\circ}C$	0.36W
		Derate Above 25°C	2.06mW/°C
		$T_C = 25^{\circ}C$	1.2W
		Derate Above 25°C	6.86mW/°C
TJ	Junction Temperature Range		-65 to +200°C
T _{stg}	Storage Temperature Range		-65 to +200°C

THERMAL PROPERTIES

Symbols	Parameters	Min.	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance, Junction To Ambient			486	°C/W
R _{0JC}	Thermal Resistance, Junction To Case			146	°C/W

SILICON PNP TRANSISTOR 2N3963

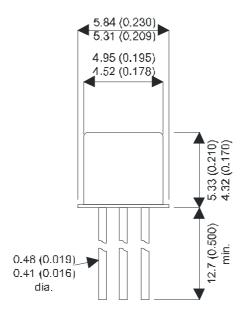
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

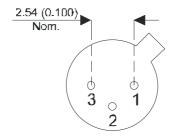
Symbols	Parameters	Test Conditi	ons	Min.	Тур.	Max.	Unit	
V _(BR) CBO	Collector-Base Breakdown Voltage	I _C = -10μA		-80			V	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = -5mA		-80			V	
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	I _C = -10μΑ		-80			V	
V _{(BR)EBO}	Emitter - Base Breakdown Voltage	I _E = -10μA		-6			V	
I _{CBO}	Collector Cut-Off Current	$V_{CB} = -70V$	V _{CB} = -70V			-10		
I _{CES}	Collector Cut-Off Current	V _{CE} = -70V				-10	nA	
I _{EBO}	Emitter Cut-Off Current	V _{EB} = -4V				-10		
	DC Current Gain	I _C = -10μΑ	V _{CE} = -5V	100		300		
			-55°C	40				
		I _C = -100μA	V _{CE} = -5V	100				
h _{FE}		I _C = -1.0mA	V _{CE} = -5V	100		450		
			100°C			600		
		$I_{C} = -50 \text{mA}^{(1)}$	V _{CE} = -5V	90				
			-55°C	45				
V _{CE(sat)} ⁽¹⁾	Collector-Emitter Saturation Voltage	I _C = -10mA	$I_B = -0.5 \text{mA}$			-0.25		
		$I_C = -50 \text{mA}$	$I_B = -5.0 \text{mA}$			-0.4	V	
V _{BE(sat)} ⁽¹⁾	Base-Emitter Saturation Voltage	I _C = -10mA	$I_B = -0.5 \text{mA}$			-0.9	, v	
		$I_C = -50mA$	$I_B = -5.0 \text{mA}$			-0.95		

DYNAMIC CHARACTERISTICS

h _{fe}	Small-Signal Current Gain	$I_C = 1.0 \text{mA}$	V _{CE} = -5.0V	100	550		
		f = 1.0KHz				550	
h _{fe}	Magnitude of Forward Current Transfer Ratio,	$I_{C} = -0.5 \text{mA}$	$V_{CE} = -5.0V$	2.0		8.0	
і і теі	Common-Emitter	f = 20MHz		2.0		6.0	
C _{obo}	Output Capacitance	$V_{CB} = -5.0V$	f = 1.0MHz			6	рF
C _{ibo}	Input Capacitance	V _{EB} = -0.5V	f = 1.0MHz			15	pF

Notes


(1) Pulse Width \leq 300us, $\delta \leq$ 2%


SILICON PNP TRANSISTOR 2N3963

MECHANICAL DATA

Dimensions in mm (inches)

TO18 (TO-206AA) METAL PACKAGE

Underside View

PIN 1 - Emitter PIN 2 - Base PIN 3 - Collector

Semelab Limited Telephone +44 (0) 1455 556565

Coventry Road, Lutterworth, Leicestershire, LE17 4JB Fax +44 (0) 1455 552612

Email: sales@semelab-tt.com

Document Number 8779

Website: http://www.semelab-tt.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460
2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM
2N5769 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E
US6T6TR NJL0281DG 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR MCH6102-TL-E
FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G
NTE101 NTE13 NTE15