# 3C91C, 3C92C, 3N243, 3N244, 3N245, 3N261, 3N262, 3N263 (TX, TXV)

# Features:

- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- High current transfer ratio
- TX and TXV devices processed to MIL-PRF-19500



### **Description:**

Each device is a high reliability optically coupled isolator that consists of an infrared emitting diode and a NPN silicon phototransistor which are mounted in a hermetically sealed TO-72 package. The **3C91C** and **3C92C** have a 935 nm wavelength, whereas the 3N243, 3N244, 3N245, 3N261, 3N262 and 3N263 have an 880 nm wavelength. All devices have 0.50" (12.70 mm) leads. Electrical characteristics vary. The 3N261TX, 3N262TX and 3N263TX devices are similar to JEDEC registered optically coupled isolators.

TX and TXV devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

LED

Peak

Wavelength

935 nm

Contact your local representative or OPTEK for more information.

Part

Number

3C91C (TX, TXV)

3C92C (TX, TXV)

3N243 (TX, TXV)

3N2XX

3N2XX

Emitter

Cathode

Collector

Anode

## **Applications:**

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment



3C91

Cathode

Collector

Emitter

Anode

| 3N244 (TX, TXV)                                                                 | 000      | Transistor | 1 | 0.3 / NA   | 3 / 40 | 10/30 | 0.50" |  |
|---------------------------------------------------------------------------------|----------|------------|---|------------|--------|-------|-------|--|
| 3N245 (TX, TXV)                                                                 |          |            |   | 0.6 / NA   |        |       | 0.50  |  |
| 3N261 (TX, TXV)                                                                 | 880 1111 |            |   | .05 / NA   |        |       |       |  |
| 3N262 (TX, TXV)                                                                 |          |            |   | 1.0 / 5.0  | 1/40   | 5/30  |       |  |
| 3N263 (TX, TXV)                                                                 |          |            |   | 2.0 / 10.0 |        |       |       |  |
| Phototransistor Collector is connected to the Header-Base-Case for ALL versions |          |            |   |            |        |       |       |  |

Sensor

Isolation

Voltage

(,000)

CTR

Min / Max

0.3 / 2.0

0.15 / NA



General Note

Pin #

1

2

3

4

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

2

3C92

Cathode

Emitter

Collector

Anode

TT Electronics | Optek Technology, Inc. 1645 Wallace Drive, Ste. 130, Carrollton, TX USA 75006 |Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

V<sub>CF</sub> (V)

Typ /

Max

10/50

Lead

Length

I<sub>F</sub> (mA)

Typ / Max

10/50



### **Absolute Maximum Ratings** (T<sub>A</sub> = 25° C unless otherwise noted)

| Operating Temperature Range                                                                 | -55° C to +125° C       |
|---------------------------------------------------------------------------------------------|-------------------------|
| Storage Temperature Range                                                                   | -65° C to +150° C       |
| Input to Output Isolation Voltage                                                           | ± 1 kVDC <sup>(1)</sup> |
| Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron] | 260° C <sup>(2)</sup>   |

#### Input Diode

| Forward DC Current | 40 mA                |
|--------------------|----------------------|
| Reverse Voltage    | 2.0 V                |
| Power Dissipation  | 60 mW <sup>(3)</sup> |
|                    |                      |

### **Output Phototransistor**

| Continuous Collector Current | 30 mA                 |
|------------------------------|-----------------------|
| Collector-Emitter Voltage    | 30 V                  |
| Emitter-Collector Voltage    | 5.0 V                 |
| Power Dissipation            | 200 mW <sup>(4)</sup> |

Notes:

1. Measured with input leads shorted together and output leads shorted together.

2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.

3. Derate linearly 2.0 mW/° C above 25° C.

4. Derate linearly 0.60 mW/° C above 65° C.



 $I_{C(ON)}$  vs  $T_A$ 

#### General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.



## Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| SYMBOL               | PARAMETER                                                                                                                                                                                                                                                                 | MIN                                         | ТҮР    | MAX                                                  | UNITS                      | TEST CONDITIONS                                                                                                                                                                       |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------|------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Diode          |                                                                                                                                                                                                                                                                           |                                             |        |                                                      |                            |                                                                                                                                                                                       |
| VF                   | Forward Voltage<br>3C91C, 3C92C (TX, TXV)<br>3C91C, 3C92C (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV) | -<br>0.8<br>1.0<br>0.7<br>0.8<br>1.0<br>0.7 |        | 1.2<br>1.5<br>1.3<br>1.5<br>1.2<br>1.5<br>1.7<br>1.3 | v                          | $\begin{split} I_{F} &= 2 \text{ mA} \\ I_{F} &= 50 \text{ mA} \\ I_{F} &= 10 \text{ mA} \\ I_{F} &= 10 \text{ mA},        $                                                          |
| V <sub>R</sub>       | Reverse Voltage<br>3C91C, 3C92C (TX, TXV)                                                                                                                                                                                                                                 | 7                                           | -      | -                                                    | V                          | I <sub>R</sub> = 0.1 mA                                                                                                                                                               |
| I <sub>R</sub>       | Reverse Current<br>3C91C, 3C92C (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)                                                                                                                                                               | -<br>-<br>-                                 | -      | 1<br>100<br>100                                      | μΑ                         | V <sub>R</sub> = 3.0 V<br>V <sub>R</sub> = 2.0 V<br>V <sub>R</sub> = 2.0 V                                                                                                            |
| C <sub>IN</sub>      | Diode Capacitance<br>3C91C, 3C92C (TX, TXV)                                                                                                                                                                                                                               | -                                           | 25     | -                                                    | pF                         | V = 0, f = 1 MHz                                                                                                                                                                      |
| Output Pho           | ototransistor                                                                                                                                                                                                                                                             |                                             |        |                                                      |                            |                                                                                                                                                                                       |
| V <sub>(BR)CEO</sub> | Collector-Emitter Breakdown Voltage<br>3C91C, 3C92C (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)                                                                                                                                           | 50<br>30<br>40                              | -<br>- | -<br>-                                               | V                          | I <sub>c</sub> = 10.0 mA<br>I <sub>c</sub> = 1.0 mA<br>I <sub>c</sub> = 1.0 mA                                                                                                        |
| V <sub>(BR)ECO</sub> | Emitter-Collector Breakdown Voltage<br>3C91C, 3C92C (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)                                                                                                                                           | 7<br>5<br>7                                 | -<br>- | -<br>-                                               | v                          | I <sub>c</sub> = 10 μA<br>I <sub>E</sub> = 100 μA<br>I <sub>E</sub> = 100 μA                                                                                                          |
| I <sub>CEO</sub>     | Collector Dark Current<br>3C91C, 3C92C (TX, TXV)<br>3C91C, 3C92C (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)                                                            |                                             |        | 10<br>50<br>100<br>100<br>100<br>100                 | nA<br>nA<br>nA<br>μA<br>μA | V <sub>CE</sub> = 5 V<br>V <sub>CE</sub> = 50 V<br>V <sub>CE</sub> = 10.0 V<br>V <sub>CE</sub> = 10.0 V, T <sub>A</sub> = 100° C<br>V <sub>CE</sub> = 10.0 V, T <sub>A</sub> = 100° C |

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.



## Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| SYMBOL               | PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN                                                                                                                                                    | ТҮР | ΜΑΧ                                                                                               | UNITS | TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Coupled              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |     |                                                                                                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| I <sub>C(ON)</sub>   | On-State Collector Current<br>3C91C, 3C92C (TX, TXV)<br>3C91C, 3C92C (TX, TXV)<br>3N243 (TX, TXV)<br>3N243 (TX, TXV)<br>3N243 (TX, TXV)<br>3N243 (TX, TXV)<br>3N244 (TX, TXV)<br>3N244 (TX, TXV)<br>3N244 (TX, TXV)<br>3N244 (TX, TXV)<br>3N245 (TX, TXV)<br>3N245 (TX, TXV)<br>3N245 (TX, TXV)<br>3N245 (TX, TXV)<br>3N261 (TX, TXV)<br>3N261 (TX, TXV)<br>3N262 (TX, TXV)<br>3N262 (TX, TXV)<br>3N263 (TX, TXV)<br>3N263 (TX, TXV)<br>3N263 (TX, TXV)<br>3N263 (TX, TXV) | 4.0<br>3.0<br>1.5<br>0.3<br>0.5<br>3.0<br>0.8<br>1.0<br>1.0<br>6.0<br>1.5<br>1.5<br>1.5<br>0.5<br>0.7<br>0.5<br>1.0<br>1.4<br>1.0<br>2.0<br>2.8<br>2.0 |     | -<br>20<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | mA    | $\begin{split} I_F &= 10 \text{ mA}, V_{CE} = 5 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 0.4 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 1 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 1 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 100^{\circ} \text{ C} \\ I$ |  |  |
| V <sub>CE(SAT)</sub> | Collector-Emitter Saturation Voltage<br>3C91C, 3C92C (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N263 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)<br>3N261, 3N262, 3N263 (TX, TXV)                                                                                                                                                                             |                                                                                                                                                        |     | 0.4<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3                                              | v     | $\begin{split} I_F &= 50 \text{ mA} \text{ , } I_C = 10 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 1.50 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 3.0 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 6.0 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 0.50 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 1.0 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 2.0 \text{ mA} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| t <sub>on</sub>      | 3C91C, 3C92C (TX, TXV)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                      | -   | 9                                                                                                 | μs    | $V_{cc}$ = 5 V, I <sub>c</sub> = 2 mA, R <sub>L</sub> = 100 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $t_{IOFF}$           | Turn-off Time<br>3C91C, 3C92C (TX, TXV))                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                      | -   | 6                                                                                                 | μs    | $V_{cc}$ = 5 V, I <sub>c</sub> = 2 mA, R <sub>L</sub> = 100 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.



## Electrical Characteristics (T<sub>A</sub> = 25°C unless otherwise noted)

| SYMBOL          | PARAMETER                                                                                                               | MIN             | ТҮР         | ΜΑΧ               | UNITS | TEST CONDITIONS                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coupled         |                                                                                                                         |                 |             |                   |       |                                                                                                                                                                                                                                                                                                                                                                            |
| C <sub>IO</sub> | Input-to-Output Capacitance<br>3C91C, 3C92C (TX, TXV)<br>3N243, 3N244, 3N245 (TX, TXV) 3N261,<br>3N262, 3N263 (TX, TXV) | -<br>-          | 2<br>-<br>- | 2.5<br>5.0<br>5.0 | pF    | $ \begin{split} f &= 1 \; \text{MHz} \\ V_{\text{IO}} &= 0 \; \text{V}, \; \text{f} = 1.00 \; \text{MHz}^{(1)} \\ V_{\text{IO}} &= 0 \; \text{V}, \; \text{f} = 1.00 \; \text{MHz}^{(1)} \end{split} $                                                                                                                                                                     |
| I <sub>IO</sub> | Leakage Input -to-Output<br>3N243, 3N244, 3N245 (TX, TXV) 3N261,<br>3N262, 3N263 (TX, TXV)                              | -               | -           | 100<br>10         | nA    | $V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$<br>$V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$                                                                                                                                                                                                                                                                                           |
| R <sub>io</sub> | Isolation Resistance<br>3C91C, 3C92C (TX, TXV)                                                                          | 10 <sup>9</sup> | -           | -                 | Ω     | V <sub>IO</sub> = +1 kV                                                                                                                                                                                                                                                                                                                                                    |
| tr              | Output Rise Time<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N262 (TX, TXV)<br>3N263 (TX, TXV)                          | -               | -           | 10<br>20<br>25    | μs    | $\begin{split} &V_{CC} = 10.0 \text{ V}, \text{ I}_{\text{F}} = 10.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega^{(2)} \text{V}_{CC} = \\ &10.0 \text{ V}, \text{ I}_{\text{F}} = 5.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega^{(2)} \\ &V_{CC} = 10.0 \text{ V}, \text{ I}_{\text{F}} = 5.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega^{(2)} \end{split}$ |
| t <sub>f</sub>  | Output Fall Time<br>3N243, 3N244, 3N245 (TX, TXV)<br>3N261, 3N262 (TX, TXV)<br>3N263 (TX, TXV)                          | -<br>-<br>-     | -           | 10<br>10<br>25    | μs    | $\begin{split} &V_{CC} = 10.0 \; V, \; I_{F} = 10.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} V_{CC} = \\ & 10.0 \; V, \; I_{F} = 5.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} \\ & V_{CC} = 10.0 \; V, \; I_{F} = 5.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} \end{split}$                                                                                                         |

Notes:

1. Measured with input leads shorted together and output leads shorted together.

2. The input waveform is supplied by a generator with the following characteristics:  $Z_{OUT} = 50 \Omega$ ,  $t_r \le 15$  ns, duty cycle ~ 1%, pulse width ~ 100 ms





General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for TT Electronics manufacturer:

Other Similar products are found below :

L061S391LF L091S224LF L061S220LF BCN164A562J7 62PR25KLF 56BW-FIFTY-PKG CHP1501R00FLF BCN164AB470J7 898-3-R150K 66XR10 66XR200K 66XR2K 66XR50 67WR1MEG 67WR200KLFTB 67ZR200 68WR5K 68XR2MEG 72PXR10K 72XR2.5K 8109 82PR25K 84WR10KTR OPB660N OPB748WZ OPB870T55 OPI1266 P110KV1-0Y20BR50K JANTX4N24A 89XHR10K L083C101 91XR5K SML100M12MSF PFC-W0805LF-03-2870-B 2627 CR200L.5 RC07GF220J RC20GF272J RC55LF-D-196R-B-B HM00-01800 HM71-10220LFTR 3371R5KL.25 L083C122 W23-330RJI WH25-47RJI 040585XM 6679-420-0 OP231 OPB471T11 OPB817Z