

3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262

Features:

- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- High current transfer ratio
- TX devices processed to MIL-PRF-19500

V_{CE} (V)

Typ /

Max

10/50

10/30

5/30

Lead

Length

0.50"

I_F (mA)

Typ / Max

10/50

3/40

1/40

Description:

Each device is a high reliability optically coupled isolator that consists of an infrared emitting diode and a NPN silicon phototransistor which are mounted in a hermetically sealed TO-72 package. The **3C91C** and **3C92C** have a 935 nm wavelength, whereas the **3N243**, **3N244**, **3N245** and **3N262** have an 880 nm wavelength. All devices have 0.50" (12.70 mm) leads. Electrical characteristics vary.

Sensor

Transistor

TX devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

LED

Peak

Wavelength

935 nm

880 nm

Contact your local representative or OPTEK for more information.

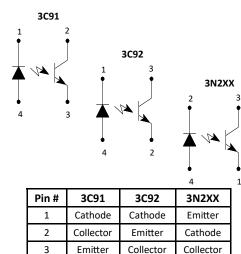
Part

Number

3C91C

3C92C (TX)

3N243


3N244

3N245 (TX)

3N262

Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

Phototransistor Collector is connected to the Header-Base-Case for ALL versions

CTR

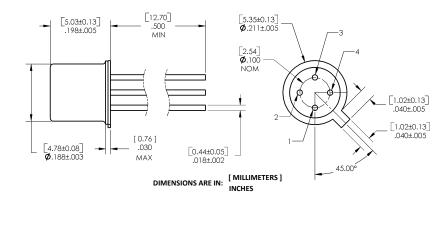
Min / Max

0.3 / 2.0

0.15 / NA

0.3 / NA

0.6 / NA


1.0/5.0

Isolation

Voltage

(,000)

1

General Note

4

Anode

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Anode

Anode

© TT electronics plc Form # 500-1080-001 Rev - 06/2019

3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

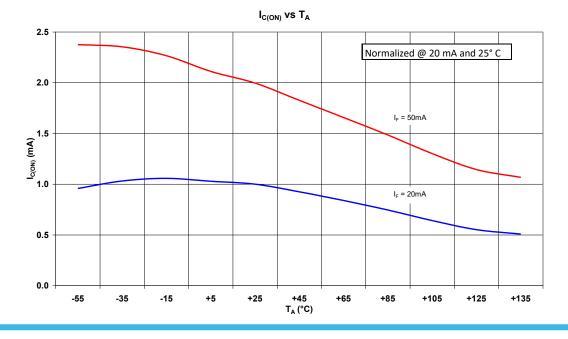
Operating Temperature Range	-55° C to +125° C
Storage Temperature Range	-65° C to +150° C
Input to Output Isolation Voltage	± 1 kVDC ⁽¹⁾
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽²⁾

Input Diode

Forward DC Current	40 mA
Reverse Voltage	2.0 V
Power Dissipation	60 mW ⁽³⁾

Output Phototransistor

Continuous Collector Current	30 mA
Collector-Emitter Voltage	30 V
Emitter-Collector Voltage	5.0 V
Power Dissipation	200 mW ⁽⁴⁾


Notes:

1. Measured with input leads shorted together and output leads shorted together.

2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.

3. Derate linearly 2.0 mW/° C above 25° C.

4. Derate linearly 0.60 mW/° C above 65° C.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Electronics

3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
Input Diode	2		•	•	•	
V _F	Forward Voltage 3C91C, 3C92C (TX) 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N262 3N262 3N262	- 0.8 1.0 0.7 0.8 1.0 0.7		1.2 1.5 1.3 1.5 1.2 1.5 1.7 1.3	V	$\begin{split} I_F &= 2 \text{ mA} \\ I_F &= 50 \text{ mA} \\ I_F &= 10 \text{ mA} \\ I_F &= 10 \text{ mA}, T_A &= -55^\circ \text{ C} \\ I_F &= 10 \text{ mA}, T_A &= -100^\circ \text{ C} \\ I_F &= 10 \text{ mA}, T_A &= -55^\circ \text{ C} \\ I_F &= 10 \text{ mA}, T_A &= -100^\circ \text{ C} \end{split}$
V _R	Reverse Voltage 3C91C, 3C92C (TX)	7	-	-	v	I _R = 0.1 mA
I _R	Reverse Current 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262		- -	1 100 100	μΑ	V _R = 3.0 V V _R = 2.0 V V _R = 2.0 V
C _{IN}	Diode Capacitance 3C91C, 3C92C (TX)	-	25	-	pF	V = 0, f = 1 MHz
Output Pho	ototransistor					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262	50 30 40	- - -		V	I _c = 10.0 mA I _c = 1.0 mA I _c = 1.0 mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262	7 5 7	- -	- -	V	I _c = 10 μA I _E = 100 μA I _E = 100 μA
I _{CEO}	Collector Dark Current 3C91C, 3C92C (TX) 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N262 3N262		- - - -	10 50 100 100 100 100	nA nA μA μA μA	$V_{CE} = 5 V$ $V_{CE} = 50 V$ $V_{CE} = 10.0 V$ $V_{CE} = 10.0 V, T_A = 100° C$ $V_{CE} = 10.0 V, T_A = 100° C$ $V_{CE} = 10.0 V, T_A = 100° C$

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262

Electrical Specifications

SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	TEST CONDITIONS
Coupled						•
I _{C(ON)}	On-State Collector Current 3C91C, 3C92C (TX) 3C91C, 3C92C (TX) 3N243 3N243 3N243 3N244 3N244 3N244 3N244 3N244 3N244 3N245 (TX) 3N245 (TX) 3N245 (TX) 3N245 (TX) 3N262 3N262 3N262	$\begin{array}{c} 4.0\\ 3.0\\ 1.5\\ 0.3\\ 0.5\\ 0.5\\ 3.0\\ 0.8\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.0\\ 1.4\\ 1.0\\ \end{array}$		- - - - - - - - - 5 - -	mA	$\begin{split} I_F &= 10 \text{ mA} \text{ , } V_{CE} = 5 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 0.4 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \text{ , } T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \text{ , } T_A = 100^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \text{ , } T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \text{ , } T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \text{ , } T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 10.0 \text{ V} \text{ , } T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V} \text{ , } T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V} \text{ , } T_A = 55^{\circ} \text{ C} \\ I_F &= 2.0 \text{ mA} \text{ , } V_{CE} = 5.0 \text{ V} \text{ , } T_A = 100^{\circ} \text{ C} \end{split}$
V _{ce(sat)}	Collector-Emitter Saturation Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N262 3N262 3N262			0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3	V	$\begin{split} I_F &= 50 \text{ mA} \text{ , } I_C = 10 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 1.50 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 3.0 \text{ mA} \\ I_F &= 20 \text{ mA} \text{ , } I_C = 6.0 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 0.50 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 1.0 \text{ mA} \\ I_F &= 2.0 \text{ mA} \text{ , } I_C = 2.0 \text{ mA} \end{split}$
t _{on}	Turn-on Time 3C91C, 3C92C (TX)	-	-	9	μs	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω
t _{IOFF}	Turn-off Time 3C91C, 3C92C (TX)	-	-	6	μs	V_{CC} = 5 V, I _C = 2 mA, R _L = 100 Ω

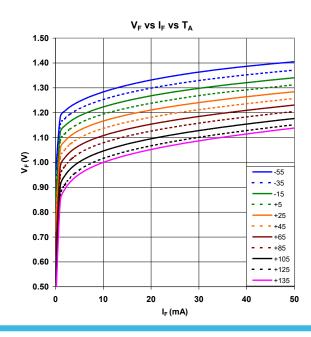
Electrical Characteristics (T_A = 25° C unless otherwise noted)

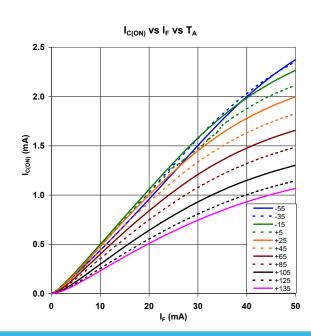
General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

3C91C, 3C92C (TX), 3N243, 3N244, 3N245 (TX), 3N262

Electrical Specifications


Electrical Characteristics (T_A = 25° C unless otherwise noted)


SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
Coupled						
C _{IO}	Input-to-Output Capacitance 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262		2 - -	2.5 5.0 5.0	pF	$ f = 1 \text{ MHz} \\ V_{IO} = 0 \text{ V, } f = 1.00 \text{ MHz}^{(1)} \\ V_{IO} = 0 \text{ V, } f = 1.00 \text{ MHz}^{(1)} $
I _{IO}	Leakage Input -to-Output 3N243, 3N244, 3N245 (TX) 3N262		-	100 10	nA	$V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$ $V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$
R _{IO}	Isolation Resistance 3C91C, 3C92C (TX)	10 ⁹	-	-	Ω	V _{IO} = +1 kV
t _r	Output Rise Time 3N243, 3N244, 3N245 (TX) 3N262	-	-	10 20	μs	$\begin{split} V_{CC} &= 10.0 \text{ V}, \text{ I}_{\text{F}} = 10.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega^{(2)} \\ V_{CC} &= 10.0 \text{ V}, \text{ I}_{\text{F}} = 5.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega^{(2)} \end{split}$
t _f	Output Fall Time 3N243, 3N244, 3N245 (TX) 3N262	-	-	10 10	μs	$\begin{split} &V_{CC} = 10.0 \text{ V}, \text{ I}_{\text{F}} = 10.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega^{(2)} \\ &V_{CC} = 10.0 \text{ V}, \text{ I}_{\text{F}} = 5.0 \text{ mA}, \text{ R}_{\text{L}} = 100 \ \Omega^{(2)} \end{split}$

Notes:

1. Measured with input leads shorted together and output leads shorted together.

2. The input waveform is supplied by a generator with the following characteristics: Z_{OUT} = 50 Ω , $t_r \le$ 15 ns, duty cycle ~ 1%, pulse width ~ 100 ms.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

1645 Wallace Drive, Carrollton, TX 75006 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

TT Electronics | OPTEK Technology

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below :

LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED