Features:

- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- High current transfer ratio
- TX devices processed to MIL-PRF-19500

Description:

Each device is a high reliability optically coupled isolator that consists of an infrared emitting diode and a NPN silicon phototransistor which are mounted in a hermetically sealed TO-72 package. The 3C91C and 3C92C have a 935 nm wavelength, whereas the 3N243, 3N244, 3N245 and $\mathbf{3 N} 262$ have an 880 nm wavelength. All devices have $0.50^{\prime \prime}(12.70 \mathrm{~mm})$ leads. Electrical characteristics vary.

TX devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500.
Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.
Contact your local representative or OPTEK for more information.

Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

Part Number	LED Peak Wavelength	Sensor	Isolation Voltage $(, 000)$	CTR Min / Max	$\begin{gathered} \mathrm{I}_{\mathrm{F}}(\mathrm{~mA}) \\ \text { Typ / Max } \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CE}}(\mathrm{~V}) \\ \mathrm{Typ} / \\ \mathrm{Max} \end{gathered}$	Lead Length
3C91C		Transistor	1				0.50"
3C92C (TX)	35			0.3 / 2.0	10/50	10/50	
3N243	880 nm			0.15 / NA	$3 / 40$	10 / 30	
3N244				0.3 / NA			
3N245 (TX)				0.6 / NA			
3N262				1.0 / 5.0	1 / 40	$5 / 30$	

Electrical Specifications

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input to Output Isolation Voltage	$\pm 1 \mathrm{kVDC}{ }^{(1)}$
Lead Soldering Temperature [1/16 inch $(1.6 \mathrm{~mm})$ from case for 5 seconds with soldering iron]	$260^{\circ} \mathrm{C}^{(2)}$

Input Diode

Forward DC Current	40 mA
Reverse Voltage	2.0 V
Power Dissipation	$60 \mathrm{~mW}{ }^{(3)}$

Output Phototransistor

Continuous Collector Current	30 mA
Collector-Emitter Voltage	30 V
Emitter-Collector Voltage	5.0 V
Power Dissipation	$200 \mathrm{~mW}^{(4)}$

Notes:

1. Measured with input leads shorted together and output leads shorted together.
2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
3. Derate linearly $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
4. Derate linearly $0.60 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $65^{\circ} \mathrm{C}$.

Electrical Specifications

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode

V_{F}	Forward Voltage 3C91C, 3C92C (TX) 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N262 3N262 3N262	$\begin{gathered} - \\ 0.8 \\ 1.0 \\ 0.7 \\ 0.8 \\ 1.0 \\ 0.7 \end{gathered}$		$\begin{aligned} & 1.2 \\ & 1.5 \\ & 1.3 \\ & 1.5 \\ & 1.2 \\ & 1.5 \\ & 1.7 \\ & 1.3 \end{aligned}$	V	$\begin{aligned} & I_{F}=2 \mathrm{~mA} \\ & I_{F}=50 \mathrm{~mA} \\ & I_{F}=10 \mathrm{~mA} \\ & I_{F}=10 \mathrm{~mA}, T_{A}=-55^{\circ} \mathrm{C} \\ & I_{F}=10 \mathrm{~mA}, T_{A}=-100^{\circ} \mathrm{C} \\ & I_{F}=10 \mathrm{~mA} \\ & I_{F}=10 \mathrm{~mA}, T_{A}=-55^{\circ} \mathrm{C} \\ & I_{F}=10 \mathrm{~mA}, T_{A}=-100^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {R }}$	$\begin{array}{\|l} \text { Reverse Voltage } \\ \text { 3C91C, 3C92C (TX) } \end{array}$	7	-	-	V	$\mathrm{I}_{\mathrm{R}}=0.1 \mathrm{~mA}$
$I_{\text {R }}$	```Reverse Current 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262```	-	-	$\begin{gathered} 1 \\ 100 \\ 100 \end{gathered}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=2.0 \mathrm{~V} \end{aligned}$
$\mathrm{Cl}_{\text {IN }}$	Diode Capacitance 3C91C, 3C92C (TX)	-	25	-	pF	$V=0, f=1 \mathrm{MHz}$

Output Phototransistor

$\mathrm{V}_{\text {(BR) }}$ CEO	```Collector-Emitter Breakdown Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262```	$\begin{aligned} & 50 \\ & 30 \\ & 40 \end{aligned}$	-		v	$\begin{aligned} & \mathrm{I}_{\mathrm{c}}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{c}}=1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{c}}=1.0 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {(BR) }}$ Eco	```Emitter-Collector Breakdown Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N262```	$\begin{aligned} & 7 \\ & 5 \\ & 7 \end{aligned}$	-		V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\text {ceo }}$	$\begin{array}{\|l} \text { Collector Dark Current } \\ \text { 3C91C, 3C92C (TX) } \\ \text { 3C91C, 3C92C (TX) } \\ \text { 3N243, 3N244, 3N245 (TX) } \\ \text { 3N243, 3N244, 3N245 (TX) } \\ \text { 3N262 } \\ \text { 3N262 } \end{array}$		- - - - -	$\begin{gathered} 10 \\ 50 \\ 100 \\ 100 \\ 100 \\ 100 \end{gathered}$	nA nA nA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=50 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$

Electrical Specifications

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Coupled

$I_{\text {c(oon) }}$	On-State Collector Current 3C91C, 3C92C (TX) 3C91C, 3C92C (TX) 3N243 3N243 3N243 3N243 3N244 3N244 3N244 3N244 3N245 (TX) 3N245 (TX) 3N245 (TX) 3N245 (TX) 3N262 3N262 3N262	$\begin{aligned} & 4.0 \\ & 3.0 \\ & 1.5 \\ & 0.3 \\ & 0.5 \\ & 0.5 \\ & 3.0 \\ & 0.8 \\ & 1.0 \\ & 1.0 \\ & 6.0 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.0 \\ & 1.4 \\ & 1.0 \end{aligned}$	- -	20	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=10{ }^{\circ} \mathrm{Cl} \end{aligned}$
$\mathrm{V}_{\text {CEISAT }}$	```Collector-Emitter Saturation Voltage 3C91C, 3C92C (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N243, 3N244, 3N245 (TX) 3N262 3N262 3N262```		- - - - 	$\begin{aligned} & 0.4 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}} 20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1.50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=6.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{I}}=1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA} \end{aligned}$
$\mathrm{t}_{\text {on }}$	$\begin{aligned} & \text { Turn-on Time } \\ & \text { 3C91C, 3C92C (TX) } \end{aligned}$	-	-	9	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$
$\mathrm{t}_{\text {IOFF }}$	$\begin{aligned} & \text { Turn-off Time } \\ & \text { 3C91C, 3C92C (TX) } \end{aligned}$	-	-	6	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$

Electrical Specifications

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Coupled

C_{10}	$\begin{aligned} & \text { Input-to-Output Capacitance } \\ & \text { 3C91C, 3C92C (TX) } \\ & \text { 3N243, 3N244, 3N245 (TX) } \\ & \text { 3N262 } \end{aligned}$	-	2	$\begin{aligned} & 2.5 \\ & 5.0 \\ & 5.0 \end{aligned}$	pF	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{10}=0 \mathrm{~V}, \mathrm{f}=1.00 \mathrm{MHz}^{(1)} \\ & \mathrm{V}_{10}=0 \mathrm{~V}, \mathrm{f}=1.00 \mathrm{MHz}^{(1)} \end{aligned}$
110	Leakage Input -to-Output 3N243, 3N244, 3N245 (TX) 3N262		-	$\begin{gathered} 100 \\ 10 \end{gathered}$	nA	$\begin{aligned} & \mathrm{V}_{10}= \pm 1.00 \mathrm{kVDC}^{(1)} \\ & \mathrm{V}_{10}= \pm 1.00 \mathrm{kVDC}^{(1)} \end{aligned}$
R_{10}	Isolation Resistance 3C91C, 3C92C (TX)	10^{9}	-	-	Ω	$\mathrm{V}_{10}=+1 \mathrm{kV}$
t_{r}	Output Rise Time 3N243, 3N244, 3N245 (TX) 3N262		-	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, I_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega^{(2)} \\ & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega^{(2)} \end{aligned}$
t_{f}	Output Fall Time 3N243, 3N244, 3N245 (TX) 3N262		-	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, I_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega^{(2)} \\ & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega^{(2)} \end{aligned}$

Notes:

1. Measured with input leads shorted together and output leads shorted together.
2. The input waveform is supplied by a generator with the following characteristics: $\mathrm{Z}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}$, duty cycle $\sim 1 \%$, pulse width $\sim 100 \mathrm{~ms}$.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by TT Electronics manufacturer:
Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-VA PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

