Hi-Reliability Optically Coupled Isolator
 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)

Features:

- TO-78 hermetically sealed package
- High current transfer ratio
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- TX and TXV devices processed to MIL-PRF-19500
- Patent No. 4124860

Description:

Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed TO-78 package. Devices are designed for military and/or harsh environments. The suffix letter " A " denotes the collector is electrically isolated from the case.

The 4N22, 4N22A, 4N23, 4N23A,4N24, and 4N24A (TX, TXV) devices are processed to MIL-PRF-19500/486. The 4N47, 4N47A, 4N48, 4N48A, 4N49, and 4N49A (TX, TXV) devices are processed to MIL-PRF-19500/548.

Please contact your local representative or OPTEK for more information.

Applications: - High-voltage isolation between input and output - Electrical isolation in dirty environments - Industrial equipment - Medical equipment - Office equipment		Ordering Info	rmation		
	Part Number	Isolation Voltage (kV)	$\left\lvert\, \begin{gathered} I_{F}(\mathrm{~mA}) \\ \text { Typ / Max } \end{gathered}\right.$	V_{CE} (Volts) Max	$\begin{gathered} \text { Processing } \\ \text { MIL-PRF- } \\ 195000 \\ \hline \end{gathered}$
	4N22 or 4N22A	1	10 / 40	35	COTS
	4N22TX or 4N22ATX				486
	4N22TXV or 4N22ATXV				
	4N23 or 4N23A				COTS
	4N23TX or 4N23ATX				486
	4N23TXV or 4N23ATXV				
	4N24 or 4N24A				COTS
	4N24TX or 4N24ATX				486
	4N24TXV or 4N24ATXV				
	4N47 or 4N47A		1/40	40	COTS
	4N47TX or 4N47ATX				548
	4N47TXV or 4N47ATXV				
	4N48 or 4N48A				COTS
	4N48TX or 4N48ATX				548
	4N48TXV or 4N4A8TXV				
	4N49 or 4N49A				COTS
	4N49TX or 4N49ATX				548
	4N49TXV or 4N49ATXV				

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hi-Reliability Optically Coupled Isolator
 4N22, 4N23, 4N24 [A] (COTS, TX, TXV)
 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature Range	
4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A (COTS, TX, TXV)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
4N47, 4N47A, 4N48, 4N48A, 4N49, 4N49A (COTS, TX, TXV)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A (COTS, TX, TXV)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
4N47, 4N47A, 4N48, 4N48A, 4N49, 4N49A (COTS, TX, TXV)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input-to-Output Isolation Voltage	$\pm 1.00 \mathrm{kVDC}{ }^{(1)}$
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	$260^{\circ} \mathrm{C}^{(2)}$

Input Diode

Forward DC Current $\left(65^{\circ} \mathrm{C}\right.$ or below)	40 mA
Reverse Voltage	2 V
Peak Forward Current (1 μ s pulse width, 300 pps$)$ $4 N 22,4 N 22 A, ~ 4 N 23, ~ 4 N 23 A, ~ 4 N 24, ~ 4 N 24 A ~(C O T S, ~ T X, ~ T X V) ~$	1 A
Power Dissipation	$60 \mathrm{~mW}^{(3)}$

Output Sensor (4N22, 4N22A, 4N23, 4N23A, 4N24, 4N24A)

Continuous Collector Current	50 mA
Collector-Emitter Voltage	35 V
Collector-Base Voltage	35 V
Emitter-Base Voltage	4 V
Power Dissipation	$300 \mathrm{~mW}{ }^{(4)}$

Output Phototransistor (4N47, 4N47A, 4N48, 4N48A, 4N49, 4N49A)

Continuous Collector Current	50 mA
Collector-Emitter Voltage	40 V
Collector-Base Voltage	45 V
Emitter-Base Voltage	7.0 V
Power Dissipation	$300 \mathrm{~mW}^{(4)}$

Notes:

1. Measured with input leads shorted together and output leads shorted together.
2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
3. Derate linearly $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $65^{\circ} \mathrm{C}$.
4. Derate linearly $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F}	Forward Voltage 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	$\begin{aligned} & 0.80 \\ & 1.00 \\ & 0.70 \\ & 0.80 \\ & 1.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 1.30 \\ & 1.50 \\ & 1.20 \\ & 1.50 \\ & 1.70 \\ & 1.30 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{F}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{F}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{F}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-100^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}$

Output Phototransistor

$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	-		V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
$\mathrm{V}_{\text {(BR)CBO }}$	Collector-Base Breakdown Voltage 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	-		V	$\begin{aligned} & I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
$V_{\text {(BR)Ebo }}$	Emitter-Base Breakdown Voltage 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	-		V	$\begin{aligned} & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
$I_{\text {ceo }}$	Collector-Emitter Dark Current 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	-	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(2)} \end{aligned}$
$\mathrm{I}_{\text {(} \mathrm{OFF} \text {) }}$	Collector-Emitter Dark Current 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	-	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C E}=20 \mathrm{~V}, I_{B}=0, I_{F}=0 \\ & V_{C E}=20 \mathrm{~V}, I_{B}=0, I_{F}=0, T_{A}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
$\mathrm{I}_{\mathrm{CB} \text { (OFF) }}$	Collector-Base Dark Current 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	-	-	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{F}}=0$

Notes:

1. Guaranteed but not tested.
2. Sample tested, LTPD $=10$.

Pin \#	Function	Pin \#	Function
1	Emitter	5	Anode
2	Base	6	Open
3	Collector	7	Cathode

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hi-Reliability Optically Coupled Isolator
 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

$\underset{\mathrm{L}}{\mathrm{SYMBO}}$	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
$\mathrm{IC}_{\text {(ON })}$	On-State Collector Current 4N22, 4N22A (COTS, TX, TXV)	$\begin{aligned} & 0.15 \\ & 2.50 \\ & 1.00 \\ & 1.00 \end{aligned}$	-		mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N23, 4N23A (COTS, TX, TXV)	$\begin{aligned} & 0.20 \\ & 6.00 \\ & 2.50 \\ & 2.50 \end{aligned}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N24, 4N24A (COTS, TX, TXV)	$\begin{aligned} & 0.40 \\ & 10.0 \\ & 4.00 \\ & 4.00 \end{aligned}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N47, 4N47A (COTS, TX, TXV) 4N47, 4N47A (COTS, TX, TXV) 4N47, 4N47A (COTS, TX, TXV)	$\begin{array}{\|l\|} \hline 0.50 \\ 0.70 \\ 0.50 \\ \hline \end{array}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{Ma}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{aligned}$
	4N48, 4N48A (COTS, TX, TXV) 4N48, 4N48A (COTS, TX, TXV) 4N48, 4N48A (COTS, TX, TXV)	$\begin{aligned} & 1.00 \\ & 1.40 \\ & 1.00 \end{aligned}$	-	5		$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \\ \hline \end{array}$
	4N49, 4N49A (COTS, TX, TXV) 4N49, 4N49A (COTS, TX, TXV) 4N49, 4N49A (COTS, TX, TXV)	$\begin{array}{\|l\|} \hline 2.00 \\ 2.80 \\ 2.00 \\ \hline \end{array}$	-	10		$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}^{(1)} \\ \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}^{(1)} \end{array}$
$\mathrm{I}_{\mathrm{CB} \text { (ON) }}$	On-State Collector Base 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)		-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\mathrm{V}_{\text {CE(SAT) }}$	Collector-Emitter Saturation Voltage 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N47A (COTS, TX, TXV) 4N48, 4N48A (COTS, TX, TXV) 4N49, 4N49A (COTS, TX, TXV)		- - - - -	$\begin{aligned} & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.02 .0 \mathrm{IA}, \mathrm{I}_{\mathrm{C}}=0 \end{aligned}$
$\mathrm{H}_{\text {fe }}$	DC Current Gain 4N22, 4N22A (COTS, TX, TXV) 4N23, 4N23A (COTS, TX, TXV) 4N24, 4N24A (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 100 \end{aligned}$	-		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$
R_{1}	Resistance (Input-to-Output) 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)	$\begin{aligned} & 10^{11} \\ & 10^{11} \end{aligned}$	-		Ω	$\begin{aligned} & V_{10}= \pm 1.0 \mathrm{VDC}^{(3)} \\ & \mathrm{V}_{\mathrm{I}-\mathrm{O}}= \pm 1000 \mathrm{VDC}^{(3)} \end{aligned}$
C_{10}	Capacitance (Input-to-Output)	-	-	5	pF	$\mathrm{V}_{1-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}^{(3)}$

Notes:

1. Guaranteed but not tested.
2. Sample tested, LTPD $=10$.
3. Measured with input leads shorted together and output leads shorted together.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hi-Reliability Optically Coupled Isolator 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
TR	Output Rise Time 4N22A (TX, TXV) 4N23A (TX, TXV) 4N24A (TX, TXV) 4N47 (TX. TXV) 4N48 (TX. TXV) 4N49 (TX. TXV)		-	$\begin{aligned} & 15 \\ & 15 \\ & 20 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
T_{F}	Output Fall Time 4N22A (TX, TXV) 4N23A (TX, TXV) 4N24A (TX, TXV) 4N47 (TX. TXV) 4N48 (TX. TXV) 4N49 (TX. TXV)		- - - - -	$\begin{aligned} & 15 \\ & 15 \\ & 20 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, R_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, I_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V},,_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$

Typical Performance Curves

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Hi-Reliability Optically Coupled Isolator 4N22, 4N23, 4N24 [A] (COTS, TX, TXV) 4N47, 4N48, 4N49 [A] (COTS, TX, TXV)

Typical Performance Curves

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by TT Electronics manufacturer:
Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-VA PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

