Surface Mount Optically Coupled Isolator

4N22U, 4N23U, 4N24U (TX, TXV)
4N47U, 4N48U, 4N49U (TX, TXV)

Features:

- Surface Mount (SM), Leadless Chip Carrier (LCC)
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- TX and TXV devices processed to MIL-PRF-19500

Description:

Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed Surface Mount, 6 Pin package. Devices are designed for military and/or harsh environments.

The $4 N 22 \mathrm{U}, 4 \mathrm{~N} 23 \mathrm{U}$ and $4 N 24 \mathrm{U}$ (TX, TXV) devices are processed to MIL-PRF-19500/486. The $4 N 47 \mathrm{U}, 4 \mathrm{~A} 48 \mathrm{U}$ and $4 N 48 \mathrm{U}$ (TX, TXV) devices are processed to MIL-PRF-19500/548.

Please contact your local representative or OPTEK for more information.

Applications:

- Military equipment
- High-Reliability environments
- High voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

Ordering Information				
Part Number	Isolation Voltage (kV)	$\begin{gathered} \mathrm{I}_{\mathrm{F}}(\mathrm{~mA}) \\ \mathrm{Typ} / \mathrm{Max} \end{gathered}$		Processing MIL-PRF19500
4N22U	1	10 / 40	35	COTS
4N22UTX				486
4N22UTXV				
4N23U				COTS
4N23UTX				486
4N23UTXV				
4N24U				COTS
4N24UTX				486
4N24UTXV				
4N47U		1 / 40	40	COTS
4N47UTX				548
4N47UTXV				
4N48U				COTS
4N48UTX				548
4N48UTXV				
4N49U				COTS
4N49UTX				548
4N49UTXV				

Surface Mount Optically Coupled Isolator

$4 N 22 \mathrm{U}, 4 \mathrm{~N} 23 \mathrm{U}, 4 \mathrm{~N} 24 \mathrm{U}$ (TX, TXV)
$4 N 47 \mathrm{U}, 4 \mathrm{~N} 48 \mathrm{U}, 4 \mathrm{~N} 49 \mathrm{U}$ (TX, TXV)

TT Electronics

Electrical Specifications

Absolute Maximum Ratings $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input-to-Output Isolation Voltage ${ }^{(1)}$	$\pm 1 \mathrm{kVDC}$
Lead Soldering Temperature (1/16" $(1.6 \mathrm{~mm})$ from case for 5 seconds with soldering iron $)^{(2)}$	$260^{\circ} \mathrm{C}$
Input Diode	50 mA
Forward DC Current ${ }^{(3)}$	2 V
Reverse DC Voltage	100 mW
Power Dissipation ${ }^{(4)}$	35 V
Output Photosensor	7.0 V
Collector-Emitter Voltage	300 mW
Emitter-Collector Voltage	
Power Dissipation ${ }^{(5)}$	

Notes:
(1) Measured with input leads shorted together and output leads shorted together. Typical input/output capacitance is 0.06 pF .
(2) RMA flux is recommended. The duration can be extended to 10 seconds maximum when flow soldering.
(3) Derate linearly $0.67 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $65^{\circ} \mathrm{C}$.
(4) Derate linearly $0.83 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(5) Derate linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

4N22U, 4N23U, 4N24U (TX, TXV) 4N47U, 4N48U, 4N49U (TX, TXV)

Electrical Specifications

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input LED						
V_{F}	Forward Voltage 4N22U, 4N23U, 4N24U (TX, TXV) 4N22U, 4N23U, 4N24U (TX, TXV) 4N22U, 4N23U, 4N24U (TX, TXV) 4N47U, 4N48U, 4N49U (TX, TXV) 4N47U, 4N48U, 4N49U (TX, TXV) 4N47U, 4N48U, 4N49U (TX, TXV)	$\begin{aligned} & 0.80 \\ & 1.00 \\ & 0.70 \\ & 0.80 \\ & 1.00 \\ & 0.70 \end{aligned}$		$\begin{aligned} & 1.30 \\ & 1.50 \\ & 1.20 \\ & 1.50 \\ & 1.70 \\ & 1.30 \end{aligned}$	V	$\begin{aligned} & I_{F}=10.0 \mathrm{~mA} \\ & I_{F}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-100^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{A}=-100^{\circ} \mathrm{C} \end{aligned}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}$

Output Phototransistor

$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage 4N22U Series 4N47U Series	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 80 \\ & 90 \end{aligned}$		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$
$V_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage 4N22U Series 4N47U Series	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$		V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$
$I_{\text {ceo }}$	Collector-Emitter Dark Current		20	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C E}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{I}_{\mathrm{B}}=0 \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{I}_{\mathrm{B}}=0 \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {CE(SAT) }}$	Collector Saturation Voltage	-	0.2	0.3	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$

Pin 1 Identifier
DIMENSIONS ARE IN: $\begin{aligned} & \text { [MILLIMETERS] } \\ & \text { INCHES }\end{aligned}$

6 -

- 5

4N22U, 4N23U, 4N24U (TX, TXV)
 4N47U, 4N48U, 4N49U (TX, TXV)

SYMBOL	PARAMETER	PART NUMBER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Coupled							
$\mathrm{I}_{\mathrm{c}} \mathrm{I}_{\mathrm{F}}$	DC Current Transfer Ratio	$\begin{aligned} & \text { 4N22U } \\ & \text { 4N23U } \\ & \text { 4N24U } \end{aligned}$	$\begin{gathered} 25 \\ 60 \\ 100 \\ \hline \end{gathered}$			\%	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
		$\begin{aligned} & \text { 4N47U } \\ & \text { 4N48U } \\ & \text { 4N49U } \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 200 \end{gathered}$			\%	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{IClON})$	On-State Collector Current	4N22U	$\begin{aligned} & 0.15 \\ & 2.50 \\ & 1.00 \\ & 1.00 \end{aligned}$	-		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
		4N23U	$\begin{aligned} & 0.2 \\ & 6.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	-		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{mAT}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
		4N24U	$\begin{gathered} 0.4 \\ 10.0 \\ 4.0 \\ 4.0 \\ \hline \end{gathered}$			mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
		4N47U	$\begin{aligned} & 0.5 \\ & 0.7 \\ & 0.5 \end{aligned}$	-		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA} \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
		4N48U	$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.0 \end{aligned}$.	5.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA} \mathrm{~T} \mathrm{~A}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA} \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
		4N49U	$\begin{aligned} & 2.0 \\ & 2.8 \\ & 2.0 \\ & \hline \end{aligned}$		10.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA} \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{mAT}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {CEISAT) }}$	Collector Saturation Voltage	$\begin{aligned} & \text { 4N22U } \\ & \text { 4N23U } \\ & \text { 4N24U } \end{aligned}$			$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & \text { 4N47U } \\ & \text { 4N48U } \\ & \text { 4N49U } \end{aligned}$			$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA} \end{aligned}$
h_{FE}	DC Current Gain	4N22U 4N23U 4N24U 4N47U 4N48U 4N49U	$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & \hline 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$			-	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
$\mathrm{tr}_{\mathrm{r}} \& \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time	$\begin{aligned} & \text { 4N22U } \\ & \text { 4N23U } \\ & \text { 4N24U } \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & 20 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \text { Pulse width }=100 \mathrm{~ms}, \text { Duty cycle }=1 \% \end{aligned}$
		4N47U 4N48U 4N49U			$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \text { Pulse width }=100 \mathrm{~ms} \text {, Duty cycle }=1 \% \end{aligned}$
R_{10}	Resistance (Input to Output)		10^{11}	-	-	Ω	$\mathrm{V}_{1-0}= \pm 1,000 \mathrm{Vdc}^{(1)}$
C_{10}	Capacitance (Input to Output)		-	-	5.0	pF	$\mathrm{V}_{\mathrm{L}-\mathrm{O}}=0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}^{(1)}$

Notes:
(1) Measured with input leads shorted together and output leads shorted together. Typical input/output capacitance is 0.06 pF .

Surface Mount Optically Coupled Isolator

T
 Electronics

4N22U, 4N23U, 4N24U (TX, TXV)
 4N47U, 4N48U, 4N49U (TX, TXV)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS

Coupled

	On-State Collector Current 4N22U, 4N22U (TX, TXV) 4N22U, 4N22U (TX, TXV) 4N22U, 4N22U (TX, TXV) 4N22U, 4N22U (TX, TXV)	$\begin{aligned} & 0.15 \\ & 2.50 \\ & 1.00 \\ & 1.00 \end{aligned}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
	$\begin{aligned} & \text { 4N23U, 4N23U (TX, TXV) } \\ & \text { 4N23U, 4N23U (TX, TXV) } \\ & \text { 4N23U, 4N23U (TX, TXV) } \\ & \text { 4N23U, 4N23U (TX, TXV) } \end{aligned}$	$\begin{aligned} & 0.20 \\ & 6.00 \\ & 2.50 \\ & 2.50 \end{aligned}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\text {C(ON) }}$	4N24U, 4N24U (TX, TXV) 4N24U, 4N24U (TX, TXV) 4N24U, 4N24U (TX, TXV) 4N24U, 4N24U (TX, TXV)	$\begin{aligned} & 0.40 \\ & 10.0 \\ & 4.00 \\ & 4.00 \end{aligned}$			mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
	4N47U, 4N47U (TX, TXV) 4N47U, 4N47U (TX, TXV) 4N47U, 4N47U (TX, TXV)	$\begin{aligned} & 0.50 \\ & 0.70 \\ & 0.50 \end{aligned}$				$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{Ma}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
	4N48U, 4N48U (TX, TXV) 4N48U, 4N48U (TX, TXV) 4N48U, 4N48U (TX, TXV)	$\begin{aligned} & 1.00 \\ & 1.40 \\ & 1.00 \end{aligned}$		5		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
	4N49U, 4N49U (TX, TXV) 4N49U, 4N49U (TX, TXV) 4N49U, 4N49U (TX, TXV)	$\begin{aligned} & 2.00 \\ & 2.80 \\ & 2.00 \end{aligned}$		10		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{CB}(\mathrm{ON})}$	On-State Collector Base 4N47U, 4N48U, 4N49U (TX, TXV)	30	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$V_{\text {CE(SAT }}$	Collector-Emitter Saturation Voltage 4N22U, 4N23U, 4N24U (TX, TXV) 4N22U, 4N23U, 4N24U (TX, TXV) 4N22U, 4N23U, 4N24U (TX, TXV) 4N47U, 4N47U (TX, TXV) 4N48U, 4N48U (TX, TXV) 4N49U, 4N49U (TX, TXV)			$\begin{aligned} & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \\ & 0.30 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.0 \\ & \mathrm{I}_{\mathrm{F}}=2.0 \end{aligned}$
$\mathrm{H}_{\text {fe }}$	DC Current Gain 4N22U, 4N22U (TX, TXV) 4N23U, 4N23U (TX, TXV) 4N24U, 4N24U (TX, TXV) 4N47U, 4N48U, 4N49U (TX, TXV)	$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 100 \end{aligned}$			V	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$
R_{10}	Resistance (Input-to-Output) 4N22U, 4N23U, 4N24U (TX, TXV) 4N47U, 4N48U, 4N49U (TX, TXV)	$\begin{aligned} & 10^{11} \\ & 10^{11} \end{aligned}$	-		Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{t}-\mathrm{O}}= \pm 1,000 \mathrm{VDC}^{(1)} \\ & \mathrm{V}_{\mathrm{t}-\mathrm{O}}= \pm 1,000 \mathrm{VDC}^{(1)} \end{aligned}$
ClO_{10}	Capacitance (Input-to-Output)	-	-	5	pF	$\mathrm{V}_{1-0}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}^{(1)}$

Notes:
(1) Measured with input leads shorted together and output leads shorted together. Typical input/output capacitance is 0.06 pF .

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by TT Electronics manufacturer:
Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-VA PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

