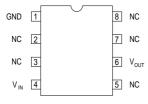


IP140MASERIESIP140MSERIESIP78M00ASERIESIP78M00SERIES



Pin 1 – V_{IN} Pin 2 – V_{OUT} Case – Ground

Pin 1 – V_{IN} Pin 2 – Ground Pin 3 – V_{OUT}

H Package – TO–39

SMD 1 CERAMIC SURFACE MOUNT

8 Pin J Package

Order Information

Part	H–Pack	J–Pack	Temp.						
Number	(TO–39)	CERDIP	SMD	Range					
IP78MxxAzz	 ✓ 	 ✓ 	~	-55 to +150°C					
IP78Mxxzz	~	~	~	"					
IP140MAzz-xx	Azz-xx 🖌 🖌								
IP140Mzz–xx	Mzz–xx 🖌								
Note:									
xx = Voltage Code (05, 12, 15) zz = Package Code (H, J, SG)									
eg. IP78	IP140MAH-	-12							

0.5 AMP POSITIVE VOLTAGE REGULATOR

FEATURES

- OUTPUT CURRENT UP TO 0.5A
- OUTPUT VOLTAGES OF 5, 12, 15V
- 0.01% / V LINE REGULATION
- 0.3% / A LOAD REGULATION
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR SOA PROTECTION
- 1% VOLTAGE TOLERANCE (-A VERSIONS)

DESCRIPTION

The IP140MA and IP78M00A series of voltage regulators are fixed output regulators intended for local, on-card voltage regulation. These devices are available in 5, 12, and 15 volt options and are capable of delivering in excess of 500mA over temperature.

The A-suffix devices are fully specified at 0.5A, provide 0.01% / V line regulation, 0.3% / A load regulation, and $\pm 1\%$ output voltage tolerance at room temperature. Protection features include safe operating area, current limiting and thermal shutdown.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise stated)

VI	DC Input Voltage (for $V_0 = 5, 1$	2, 15V)	35V
P _D	Power Dissipation		Internally limited 1
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	– H Package	20°C / W
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	 – SG Package 	TBA °C / W
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Ambient	 – J Package 	119°C / W
Т _Ј	Operating Junction Temperature Range		–55 to 150°C
T _{stg}	Storage Temperature		–65 to 150°C

Note 1. Although power dissipation is internally limited, these specifications are applicable for maximum power dissipation P_{MAX} of 2W for the H–Package ,1.05W for the J–Package and 15W for the SG–Package.

IP140MA SERIES IP140M SERIES IP78M00A SERIES IP78M00 SERIES

ELECTRICAL CHARACTERISTICS

				IP78M05A IP140MA–05		IP78M05 IP140M–05				
Parameter		Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		I _O = 100mA	V _{IN} = 10V	4.95	5	5.05	4.8	5	5.2	
. /		I _O = 5mA to 350mA								V
Vo	Output Voltage	$P_{D} \leq P_{MAX}$		4.85		5.15	4.75		5.25	v
		V _{IN} = 7.5V to 20V	T _J = -55 to 150°C							
			$V_{IN} = 7V$ to 25V		3	10			50	
	Line Regulation	I _O = 200mA	$V_{IN} = 8V$ to 25V		3	10			25	\
ΔV_O	Line Regulation		T _J = -55 to 150°C		3	10			25	mV
		I _O = 500mA	$V_{IN} = 8V$ to 12V		3	10			50	
ΔV _O	Load Regulation	$I_{O} = 5mA \text{ to } 500mA$	ł		5 50				50	mV
Δvo	Load Regulation	V _{IN} = 10V	$T_{J} = -55$ to $150^{\circ}C$		5	50			50	mv
	Quiescent Current	V _{IN} = 10V	I _O = 350mA		4	6		4	6	mA
Ι _Q			T _J = -55 to 150°C		4					
		$I_{O} = 5mA \text{ to } 500mA$	A	0.1 0.5				0.5		
ΔI_Q	Quiescent Current	V _{IN} = 10V	$T_{J} = -55$ to $150^{\circ}C$		0.1	0.5			0.5	mA
	Change	I _O = 200mA	$V_{IN} = 8V$ to 25V		0.2	0.8			0.8	11.0 \
			$T_{J} = -55$ to $150^{\circ}C$		0.2	0.0			0.0	
V _N	Output Noise	f = 10Hz to 100kHz	,		40	200		40	200	μV
	Voltage					200			200	μ.
ΔV_{IN}		f = 120Hz	I _O = 300mA	65	80		62			
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	— Rinnle Rejection	ection $V_{IN} = 8V \text{ to } 18V$	I _O = 100mA	65	65 80	80	62			dB
			$T_{J} = -55$ to $150^{\circ}C$							
	Dropout Voltage	l _O = 350mA			2	2.5			2.5	V
I_{sc}	Short Circuit Current	V _{IN} = 35V			300	600		300	600	mA
I _{pk}	Peak Output Current	V _{IN} = 10V		0.7	1.0	1.4	0.7	1.0	1.6	А
Ave	Average Temperature $I_{O} = 5mA$			0.5	2.0		0.5		mV	
	Coefficient of V _O	10 - 0117			0.0	2.0		0.0		℃

All characteristics are measured with a capacitor across the input of 0.22μF and a capacitor across the output of 0.1μF.
 All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_p ≤ 10ms, δ ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

2) Test Conditions unless otherwise stated: $T_J = 25^{\circ}C$

 $P_{MAX} = 2W$ for H Package (TO-39) $P_{MAX} = 1.05W$ for J Package (CERDIP) $P_{MAX} = 15W$ for SG Package (SMD1)

IP140MA SERIES IP140M SERIES IP78M00A SERIES IP78M00 SERIES

ELECTRICAL CHARACTERISTICS

Parameter Test Conditions				P78M12 140MA-		IP78M12 IP140M–12				
		Test Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
		I _O = 100mA	V _{IN} = 19V	11.88	12	12.12	11.50	12	12.50	
V		$I_{O} = 5 \text{mA to } 350 \text{mA}$	I _O = 5mA to 350mA							V
Vo	Output Voltage	$P_{D} \leq P_{MAX}$	$V_{IN} = 14.8V$ to 27V	11.64		12.36	11.40		12.60	V
		T _J = -55 to 150°C								
		I _O = 200mA	$V_{IN} = 14.5V$ to 30V		4	18			60	
	Line Devulation		$V_{IN} = 16V \text{ to } 30V$			40			00	
ΔV_{O}	Line Regulation		T _J = -55 to 150°C		4	18			30	mV
		I _O = 500mA	$V_{IN} = 16V$ to 22V		4	18			120	
A \ /	Lood Dogulation	$I_{O} = 5mA \text{ to } 500mA$	A	40 00				400		
ΔV_{O}	Load Regulation	V _{IN} = 19V	T _J = -55 to 150°C		10	60			120	mV
	Quiescent Current	V _{IN} = 19V	I _O = 350mA		4	6		4	6	mA
Ι _Q			T _J = -55 to 150°C		4	6		4	0	mA
		$I_{O} = 5mA \text{ to } 500mA$	Ą	0.1 0.5		0.5			0.5	
ΔI_Q	Quiescent Current Change	V _{IN} = 19V	T _J = -55 to 150°C		0.1	0.5			0.5	mA
		I _O = 200mA	mA V _{IN} = 14.8V to 30V		0.2	0.8			0.8	
			T _J = -55 to 150°C		0.2	0.8			0.0	
V _N	Output Noise	f = 10Hz to 100kHz	7		75	480		75	480	μV
	Voltage		-		15	400		75	400	μv
ΔV_{IN}		f = 120Hz	I _O = 300mA	58	72		55			
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	 – Ripple Rejection 	$V_{IN} = 15V \text{ to } 25V$	I _O = 100mA	58	72		55			dB
Δ v 0		VIN = 15V to 25V	T _J = -55 to 150°C	50	12					
	Dropout Voltage	I _O = 350mA			2	2.5			2.5	V
I _{sc}	Short Circuit Current	V _{IN} = 35V			300	600		300	600	mA
I _{pk}	Peak Output Current	V _{IN} = 19V		0.7	1.0	1.4	0.7	1.0	1.6	А
Av	erage Temperature	I _O = 5mA			1.2	4.8		1.2		mV
	Coefficient of V _O				1.4	т.о		1.2		℃

All characteristics are measured with a capacitor across the input of 0.22μF and a capacitor across the output of 0.1μF.
 All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_p ≤ 10ms, δ ≤ 5%). Output voltage changes due to changes in internal temperature must be taken into account separately.

2) Test Conditions unless otherwise stated: $T_J = 25^{\circ}C$

 $P_{MAX} = 2W$ for H Package (TO-39) $P_{MAX} = 1.05W$ for J Package (CERDIP) $P_{MAX} = 15W$ for SG Package (SMD1)

IP140MASERIESIP140MSERIESIP78M00ASERIESIP78M00SERIES

ELECTRICAL CHARACTERISTICS

				IP78M15A IP140MA–15		IP78M15 IP140M–15				
Parameter		Test Conditions		Min.	Typ.	Max.	Min.	Typ.	Max.	Units
		I _O = 100mA	V _{IN} = 23V	14.85	15	15.15	14.40	15	15.60	
.,		I _O = 5mA to 350m/								
Vo	Output Voltage	$P_{D} \leq P_{MAX}$		14.55		15.45	14.25		15.75	V
		V _{IN} = 18V to 30V	T _J = -55 to 150°C							
			V _{IN} = 17.5V to 30V		4	22			60	
	Line Degulation	I _O = 200mA	$V_{IN} = 20V \text{ to } 30V$		4	22			20	-
ΔV_O	Line Regulation		T _J = -55 to 150°C		4	22			30	mV
		I _O = 500mA	V _{IN} = 20V to 26V		4	22			150	-
ΔV _O	Load Regulation	I _O = 5mA to 500m	٩		12	75			150	mV
Δvο	Load Regulation	V _{IN} = 23V	T _J = -55 to 150°C		12	75			150	mv
1.	Quiescent Current	V _{IN} = 23V	I _O = 350mA		4	6		4	6	mA
Ι _Q			T _J = -55 to 150°C		4			4	0	
		$I_{O} = 5mA \text{ to } 500m/$	٩	0.1 0.5				0.5		
ΔI_Q	Quiescent Current	V _{IN} = 23V	T _J = -55 to 150°C		0.1	0.0			0.0	mA
	Change	I _O = 200mA	$V_{IN} = 18V$ to 30V		0.2	0.8			0.8	11.0 \
			T _J = -55 to 150°C		0.2	0.0			0.0	
V _N	Output Noise	f = 10Hz to 100kH:	7		90	600		90	600	μV
	Voltage									<i>.</i>
ΔV_{IN}		f = 120Hz	I _O = 300mA	57	70		54			
$\frac{\Delta V_{\rm IN}}{\Delta V_{\rm O}}$	Ripple Rejection	V _{IN} = 18.5V to	I _O = 100mA	57	70	0	54			dB
		28.5V	$T_{\rm J} = -55$ to $150^{\circ}{\rm C}$							
	Dropout Voltage	I _O = 350mA			2	2.5			2.5	V
I _{sc}	Short Circuit Current	V _{IN} = 35V			300	600		300	600	mA
I _{pk}	Peak Output Current	V _{IN} = 23V		0.7	1.0	1.4	0.7	1.0	1.6	A
Ave	Average Temperature $I_{O} = 5mA$			1.5	6.0		1.5		mV	
(Coefficient of V _O	0 = 0111			1.0			1.0		℃

All characteristics are measured with a capacitor across the input of 0.22μF and a capacitor across the output of 0.1μF.
 All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (t_p ≤ 10ms, δ ≤ 5%). Output

voltage changes due to changes in internal temperature must be taken into account separately.

2) Test Conditions unless otherwise stated: $T_J = 25^{\circ}C$

$$\begin{split} &\mathsf{P}_{\mathsf{MAX}} = 2\mathsf{W} \text{ for H Package (TO-39)} \\ &\mathsf{P}_{\mathsf{MAX}} = 1.05\mathsf{W} \text{ for J Package (CERDIP)} \\ &\mathsf{P}_{\mathsf{MAX}} = 15\mathsf{W} \text{ for SG Package (SMD1)} \end{split}$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below :

M38D29FFHP#U1 702103A 717726C 742457H MP20051DN-LF-Z R5F111PGGFB#30 AP7363-SP-13 NCP103AMX285TCG NCV8664CST33T3G NCV8752AMX28TCG L9454 AP7362-HA-7 LX13043CLD TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT TLF4949EJ L9708 L970813TR 030014BB 059985X EAN61387601 EAN61573601 NCP121AMX173TCG NCP4687DH15T1G NCV8703MX30TCG 701326R 702087BB 755078E TCR2EN28,LF(S LM1117DT-1.8/NO LT1086CM#TRPBF AZ1085S2-1.5TRE1 TLE4279GXUMA2 MAX15101EWL+T NCV8170AXV250T2G SCD337BTG TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S MAX15103EWL+T TS2937CZ-5.0 C0 MAX8878EUK30-T MAX663CPA NCV4269CPD50R2G NCV8716MT30TBG AZ1117IH-1.2TRG1