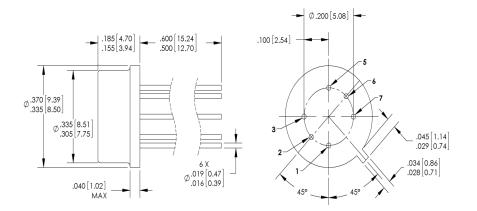
JAN/JANTX/JANTXV 4N22, 4N23, 4N24 [A]

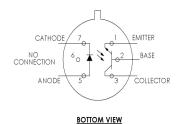
Features:

- TO-78 hermetically sealed package
- High current transfer ratio
- 1 kV electrical isolation
- Base contact provided for conventional transistor biasing
- JAN, JANTX and JANTXV devices processed to MIL-PRF-19500
- Patent No. 4124860

Description:


Each isolator in this series consists of an infrared emitting diode and a NPN silicon phototransistor, which are mounted in a hermetically sealed TO-78 package. Devices are designed for military and/or harsh environments. The suffix letter "A" denotes the collector is electrically isolated from the case.

The JAN / JANTX / JANTXV 4N22, 4N22A, 4N23A, 4N23A, 4N24, and 4N24A devices are processed to MIL-PRF-19500/486. This series of 4N products are JEDEC registered, DSCC qualified.


Please contact your local representative for more information.

Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

DIMENSIONS ARE IN INCHES [MIM]

Pin #	Function	Pin #	Function
3	Collector	5	Anode
2	Base	6	Open
1	Emitter	7	Cathode

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature Range	-65°C to 150°C		
Operating Temperature Range	-55°C to +125°C		
Input-to-Output Isolation Voltage	± 1.00 kVDC ⁽¹⁾		
Lead Soldering Temperature [1/16 inch (1.6mm) from case for 5 seconds with soldering iron]	260°C ⁽²⁾		
ESD Class	1C		
Input Diode			
Forward DC Current (65°C or below)	40 mA		
Reverse Voltage	2 V		
Peak Forward Current (1 μs pulse width, 300 pps)	1 A		
Power Dissipation	60 mW ⁽³⁾		
Output Sensor:			
Continuous Collector Current	50 mA		
Collector-Emitter Voltage	40 V		
Collector-Base Voltage	45 V		
Emitter-Base Voltage	4 V		
Power Dissipation	300 mW ⁽⁴⁾		

Notes:

- 1. Measured with input leads shorted together and output leads shorted together.
- RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- 3. Derate linearly 1.0 mW/° C above 65° C.
- 4. Derate linearly 3.0 mW/° C above 25° C.

Ordering Information						
Part Number	Isolation I _F (mA) Voltage (kV) Typ / Max		V _{CE} (Volts) Max	Processing MIL-PRF- 195000		
JAN4N22 or JAN4N22A						
JANTX4N22 or JANTX4N22A						
JANTXV4N22 or JANTXV4N22A						
JAN4N23 or JAN4N23A						
JANTX4N23 or JANTX4N23A	1	10 / 40	40	486		
JANTXV4N23 or JANTXV4N23A						
JAN4N24 or JAN4N24A						
JANTX4N24 or JANTX4N24A						
JANTXV4N24 or JANTXV4N24A						

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS		
Input Diode								
V_{F}	Forward Voltage	0.80 1.00 0.70	- - -	1.50 1.70 1.30	V	$I_F = 10.0 \text{ mA}$ $I_F = 10.0 \text{ mA}, T_A = -55^{\circ} C^{(1)}$ $I_F = 10.0 \text{ mA}, T_A = +100^{\circ} C^{(1)}$		
I _R	Reverse Current	-	-	100	μΑ	V _R = 2.0 V		
Output Pl	hototransistor							
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage	40	-	-	V	I _C = 1.0 mA, I _B = 0, I _F = 0		
V _{(BR)CBO}	Collector-Base Breakdown Voltage	45	-	-	V	I _C = 100 μA, I _B = 0, I _F = 0		
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	7	-	-	V	I _E = 100 μA, I _C = 0, I _F = 0		
I _{C(OFF)}	Collector-Emitter Dark Current	-	-	100 100	nA μA	$V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0$ $V_{CE} = 20 \text{ V}, I_B = 0, I_F = 0, T_A = 100^{\circ}\text{C}$		
I _{CB(OFF)}	Collector-Base Dark Current	-	-	100	nA	$V_{CB} = 20 \text{ V}, I_E = 0, I_F = 0$		
Coupled								
	On-State Collector Current JAN / JANTX / JANTXV 4N22 [A]	0.15 2.50 1.00 1.00	- - -	- - -		$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)}$		
I _{C(ON)}	JAN / JANTX / JANTXV 4N23 [A]	0.20 6.00 2.50 2.50	- - -	- - -	mA	$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)}$		
	JAN / JANTX / JANTXV 4N24 [A]	0.40 10.0 4.00 4.00	- - -	- - -		$I_F = 2.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0$ $I_F = 10.0 \text{ mA}, V_{CE} = 5 \text{ V}, I_B = 0, T_A = -55^{\circ} \text{ C}^{(1)}$		
V _{CE(SAT)}	Collector-Emitter Saturation Voltage JAN / JANTX / JANTXV 4N22 [A] JAN / JANTX / JANTXV 4N23 [A] JAN / JANTX / JANTXV 4N24 [A]		- - -	0.30 0.30 0.30	V	I _F = 20 mA , I _C = 2.5 mA, I _B = 0 I _F = 20 mA , I _C = 5.0 mA, I _B = 0 I _F = 20 mA , I _C = 10.0 mA, I _B = 0		
H_FE	DC Current Gain	100	-	-	V	$V_{CE} = 5.0 \text{ V}$, $I_C = 10.0 \text{ mA}$, $I_F = 0 \text{ mA}$		
R _{IO}	Resistance (Input-to-Output)	10 ¹¹	-	-	Ω	$V_{10} = \pm 1.0 \text{ VDC}^{(3)}$		
		1						

Notes:

 C_{IO}

 T_R, T_F

1. Guaranteed but not tested.

Capacitance (Input-to-Output)

Output Rise and Fall Time

- 2. Sample tested, LTPD = 10.
- 3. Measured with input leads shorted together and output leads shorted together.

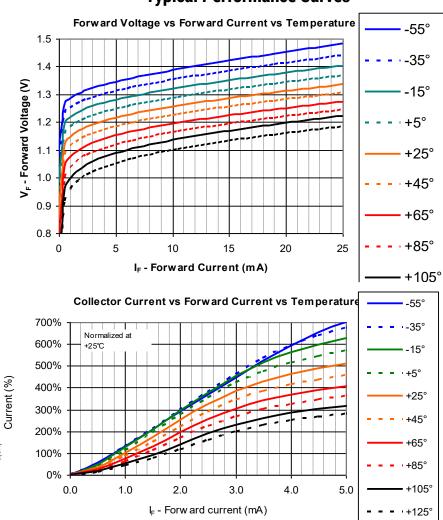
General Note

Rev J 08/2019 Page 3

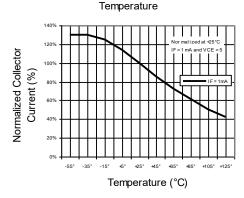
 $V_{I-O} = 0 V$, $f = 1.0 MHz^{(3)}$

 V_{CC} = 10.0 V , I_F = 10.0 mA, R_L = 100 Ω

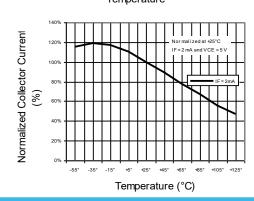
pF


5

20.0



Typical Performance Curves



Normalized Collector Current Vs

l_{C(ON)} - Normalized Collector

Normalized Collector Current Vs Temperature

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below:

00028 00053P0231 8967380000 56956 CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902 5813-0901 58410 00576P0030 00581P0070 5882900001 00103P0020 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13 LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP