

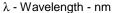
PIN Silicon Photodiode Type OP905

Features

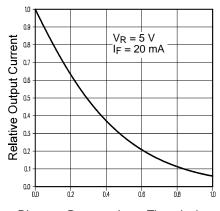
- Narrow receiving angle
- Linear response vs. irradiance
- Fast switching time
- T-1 package style
- Small package ideal for space limited applications

Description

The OP905 device consists of a PIN silicon photodiode molded in a clear epoxy package which allows spectral response from visible to infrared light wavelengths. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.


Absolute Maximum Ratings (T_A = 25^o C unless otherwise noted)

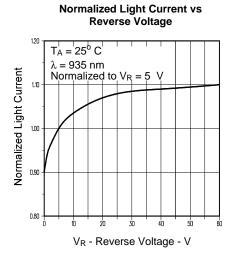
Reverse Breakdown Voltage...... 60 V Storage and Operating Temperature Range.....-40° C to +100° C Notes:

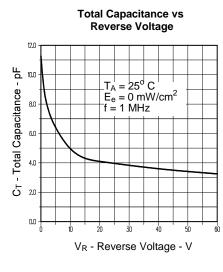

- RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.67 mW/° C above 25° C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested.
- (4) To calculate typical dark current in nA, use the formula $I_D = 10^{(0.042 \text{ T}_A^{-1.5})}$ where T_A is ambient temperature in $^{\circ}$ C.

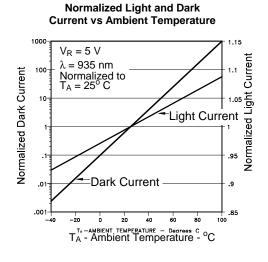
Typical Performance Curves

Relative Response vs. Wavelength 1,0 % O.8 Response -Relative 0.0 600 700 1000

Coupling Characteristics OP905 and OP265

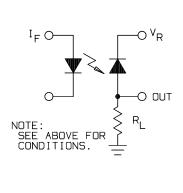

Distance Between Lens Tips - inches

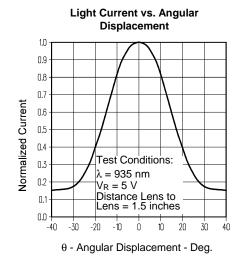

Type OP905


Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
lμ	Reverse Light Current	14		32	μΑ	$V_R = 5 \text{ V, Ee} = 0.50 \text{ mW/cm}^{2(3)}$
I_{D}	Reverse Dark Current		1	60	nA	$V_R = 30 \text{ V}, E_e = 0$
$V_{(BR)}$	Reverse Breakdown Voltage	60			V	$I_R = 100 \mu A$
V_{F}	Forward Voltage			1.2	V	I _F = 1 mA
C_{T}	Total Capacitance		4		pF	$V_R = 20 \text{ V}, E_e = 0, f = 1.0 \text{ MHz}$
t _r , t _f	Rise Time, Fall Time		5		ns	V_R = 20 V, λ = 850 nm, R_L = 50 Ω

Typical Performance Curves





VR = 5 V TA = 25° C $\Delta = 335 \text{ nm}$ $\Delta = 935 \text{ nm}$

Light Current vs. Irradiance

Switching Time Test Circuit

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Photodiodes category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below:

LTR-526AD OED-SP-7L LTR-536AB LTR-743DBM1-TA 67-21SYGC-S349-TR8 SFH 2200 A01 HFD3081-108-XBA BPW 34 S E9601

SFH 2713 SFH 2703 LTR-546AD BPV23FL BPW 34 FAS BPW 34 FS IG17X1000S4I IG22X250S4I VTD205H VTD205KH

VTP1232FH VTP4085H SFH 2400 OP913WSL OPF794 PD70-01C/TR7 LTR-536AD VTP8651H VTD206KH VTB1013H BPV23NF

OP905 LTR-516AD BPW 34 FS-Z VTD34FH QSB34CGR SFH 2500 FA PD15-22C/TR8 VEMD5510C SFH 2200 VEMD5510CF

SAH230M SAH230M2 SAH500M2 BP 104 FS BPV22F-AS12 BPW 21 BPW 34 SR-Z BPX 65 HSDL-5400#011 BPW 34 FASR BPW 34

FSR