Photologic ${ }^{\otimes}$ Slotted Optical Switch

OPB120A, OPB120B, OPB121B, OPB122B

Features:

- Choice of output configuration
- Printed circuit board mounting
- Opaque plastic housing
- Low profile

- $0.080^{\prime \prime}(2.03 \mathrm{~mm})$ wide slot
- $0.275^{\prime \prime}(6.99 \mathrm{~mm})$ lead spacing

Description:

The OPB120 through OPB123 devices consist of an infrared emitting diode and a Photologic ${ }^{\circledR}$ sensor (which is a monolithic integrated circuit that incorporates a linear amplifier and a Schmitt Trigger). The OPB120 series have an LED and Photologic ${ }^{\circledR}$ sensor mounted on opposite sides of a $0.080^{\prime \prime}(2.03 \mathrm{~mm})$ wide gap of an opaque housing. The OPB12_A series have a molded $0.040^{\prime \prime}$ (1.02 mm) wide apertures located over both the emitter and the Photologic ${ }^{\circledR}$ sensor. The OPB12_B seriesseries have a molded $0.040^{\prime \prime}(1.016 \mathrm{~mm})$ wide apertures located over the emitter and $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ over the Photologic ${ }^{\circledR}$ sensor. All devices in this series have the added stability utilizing hysteresis built into the amplification circuitry.

The electrical output can be specified as either buffered Totem-Pole (OPB 120A, OPB120B), buffered Open-Collector (OPB121B), and Inverted Totem-Pole (OPB122B).

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing
- Object sensing

Pin \#	Description
1	Cathode
2	Anode
3	$V_{c c}$
4	Output
5	Ground

Ordering Information		
Part Number	Sensor Photologic	Aperture Emitter/Sensor
	Totem-Pole	$0.04^{\prime \prime} / 0.04$ "
OPB120B		
OPB121B	Open-Collector	$0.04^{\prime \prime} / 0.01^{\prime \prime}$
OPB122B	Inverted Totem- Pole	0.04 " 0.01 "

Photologic ${ }^{\circledR}$ Slotted Optical Switch

Electronics

OPB121 Buffered Open-Collector

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB120A, OPB120B, OPB121B, OPB122B

Electrical Specifications

Absolute Maximum Ratings $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Supply Voltage (not to exceed 3 seconds)	10 V
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left(1 / 16^{\prime \prime}(1.6 \mathrm{~mm})\right.$ from case for 5 seconds with soldering iron) ${ }^{(1)}$	$260^{\circ} \mathrm{C}$
Input Infrared Diode	
Input Diode Power Dissipation ${ }^{(2)}$	200 mW
Output Photologic ${ }^{\circledR}$ Power Dissipation ${ }^{(4)}$	300 mW
Total Device Power Dissipation ${ }^{(5)}$	
Output Photologic ${ }^{\circledR}$	25 mW
Voltage at Output Lead (Open Collector Output - OPB121, OPB122, OPB123)	40 mA
Forward D.C. Current	2 V
Reverse D.C. Current	

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(3) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0$.
(4) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(5) Derate linearly $6.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(6) Applies to Totem Pole configurations (OPB120A, OPB120B) only.
(7) All parameters tested using pulse technique.

OPB120A, OPB120B, OPB121B, OPB122B

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode (see OP240 for additional information)						
V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Output Photologic ${ }^{\circledR}$ Sensor (see OPL560 for additional information)

$\mathrm{V}_{\text {cc }}$	Operating D.C. Supply Voltage	4.75	-	5.25	V	
$\mathrm{I}_{\text {CCL }}$	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{I}_{\text {CCH }}$	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{OH}	High Level Output Voltage: Buffered Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Inverted Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {OH }}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
I_{OH}	High Level Output Voltage: Buffered Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
	Inverted Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{F}}(+)$	LED Positive-Going Threshold Current	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}(+) / \mathrm{I}_{\mathrm{F}}(-)$	Hysteresis	-	2	-	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB120A, OPB120B, OPB121B, OPB122B

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
los	Short Circuit Output Current: Buffered Totem-Pole Output	-20	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{(2)} \\ & \text { Output }=\mathrm{GND} \end{aligned}$
	Inverted Totem-Pole Output	-20	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(2)} \\ & \text { Output }=\mathrm{GND} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise Time, Output Fall Time	-	70	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=0 \text { or } 20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=8 \mathrm{TTL} \text { Loads (Totem-Pole) } \\ & \mathrm{R}_{\mathrm{L}}=360 \Omega \text { (Open-Collector) } \end{aligned}$
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Low-High \& High-Low	-	5	-	$\mu \mathrm{s}$	

Notes:
(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=00$.
(2) Applies to Totem Pole configurations (OPB120A, OPB120B) only.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

Photologic ${ }^{\circledR}$ Slotted Optical Switch

TT Electronics

OPB120A, OPB120B, OPB121B, OPB122B

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Switches, Transmissive, Photo IC Output category:
Click to view products by TT Electronics manufacturer:

Other Similar products are found below :
EESX4009P1MID1 EE-SMR3-1T GP1A51HRJ00F HOA6991-500 EE-SX460-P1 OPB960N11 OPB120B OPB121B HOA0961-N51 HOA0963-T51 HOA0973-N51 HOA0973-T51 HOA2006-001 HOA2007-001 HOA6961-T51 HOA6971-T55 HOA6972-T51 HOA6981-

L55 HOA6981-T51 HOA6982-T51 HOA6990-L51 HOA6991-L51 HOA6991-T51 HOA6991-T55 HOA6992-L51 HOA6992-N55 EE-SA407-P2 EE-SPX303-N EE-SX3009-P1 EE-SX301 EE-SX305 EE-SX3070 EE-SX3081 EE-SX3088-W11 EE-SX3096-W11 EE-SX3160W11 EE-SX3161-W11 EE-SX3162-P1 EE-SX3162-P1-Z EE-SX3162-P2 EE-SX3163-P1 EE-SX3163-P2 EE-SX3164-P1 EE-SX3239-P2 EE-SX384 EE-SX398 EE-SX4009-P1 EE-SX4009-P10 EE-SX4070 EE-SX4081

