Features:

- Non-contact switching
- Printed circuit board mounting
- Enhanced signal to noise ratio
- PIN photodiode sensor for high speed (OPB611, OPB621)
- Lead centers: 0.275" (OPB61_) / 0.320" (OPB62_)
- Gap: 0.150" (OPB61_) / 0.190" (OPB62_)

Description:

The OPB610 and OPB620 slotted optical switches consist of an infrared emitting diode and an NPN silicon phototransistor with an enhanced low current roll-off to improve contrast ratio and immunity to background irradiance.

The OPB611, OPB621 slotted optical switch consists of an infrared emitting diode and a PIN photodiode with a polysulfone housing that is opaque to visible light, but transmissive to infrared. The low $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{f}$ of the PIN photodiode is ideal for high-speed operation. The sensitivity to ambient radiation is minimized.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.
Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information					
Part Number	LED Peak Wavelength	Sensor	Slot Width / Depth	Aperture Emitter / Sensor	Lead Length I Spacing
OPB610	890 nm	Rbe Transistor	0.150 / 0.240"	0.06" / 0.06"	0.100" / 0.275"
OPB611		Diode			
OPB620		Rbe Transistor	0.190 / 0.285 "		0.100" / 0.320"
OPB621		Diode			

OPB610, OPB611

OPB610, OPB620

OPB611, OPB621
DIMENSIONS ARE IN:
[MILLIMETERS]
INCHES

Pin \#	LED	Pin \#	Transistor / Diode
1	Anode	4	Emitter / Anode
2	Cathode	3	Collector / Cathode

[^0]
Slotted Optical Switch

OPB610, OPB611, OPB620, OPB621

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage and Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature [1/16 inch $(1.6 \mathrm{~mm})$ from the case for 5 sec. with soldering iron] ${ }^{(1)}$	$260^{\circ} \mathrm{C}$

Input Diode

Forward DC Current	50 mA
Peak Forward Current $(1 \mu \mathrm{~s}$ pulse width, 300 pps$)$	3 A
Reverse DC Voltage	3 V
Power Dissipation $^{(2)}$	100 mW

Output Photodiode (OPB621)

Reverse Breakdown Voltage	60 V
Power Dissipation	100 mW

Output Phototransistor (OPB610, OPB620)

Collector-Emitter Voltage	24 V
Emitter-Collector Voltage	10 mA
Collector DC Current	30 mA
Power Dissipation ${ }^{(3)}$	200 mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode (See OP240 for additional information)

V_{F}	Forward Voltage OPB610, OPB620 OPB621	1.15	-	$\begin{gathered} 1.6 \\ 1.45 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$

Output Phototransistor (OPB610, OPB620) (See OP505 for additional information)

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	24	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$\mathrm{BV}_{\text {ECO }}$	Emitter-Collector Breakdown Voltage	0.4	-	-	V	$\mathrm{I}_{\mathrm{CE}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CEO}}$	Collector-Emitter Dark Current	-	-	100	nA	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$

Output Photodiode (OPB611, OPB621) (See OP999 for additional information)

I_{D}	Dark Current	-	-	65	nA	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}, \mathrm{E}_{\mathrm{E}}=0 \mathrm{~mW}$
$\mathrm{~V}_{(\mathrm{BR}) \mathrm{R}}$	Reverse Breakdown Voltage	60	-	-	V	$\mathrm{IR}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0 \mathrm{~mW}$
$\mathrm{~V}_{\mathrm{F}}$	Forward Voltage	-	-	1.0	V	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \mathrm{E}_{\mathrm{E}}=0 \mathrm{~mW}$

Combined

$\mathrm{V}_{\mathrm{SAT}}$	Collector-Emitter Saturation Voltage OPB610, OPB620	-	-	0.4	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{C}(\mathrm{ON})}$	On-State Collector/Diode Current OPB610, OPB620	1	-	-	mA	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ (gap unblocked)
	OPB611, OPB621					

[^1]
Slotted Optical Switch

OPB610, OPB611, OPB620, OPB621

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Switches, Specialised category:
Click to view products by TT Electronics manufacturer:
Other Similar products are found below :
HOA6394-001 HOA6506-001 HOA6241-003 HOA6109-002 HOA6323-101 NJL5310R-TE1 EE-SPZ301 OPB355T TCND5000 OPB621

[^0]: RoHS
 OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

[^1]: (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to leads when solder-
 ing.
 (2) Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
 (3) Derate linearly $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
 (4) Plastic body is soluble in chlorinated hydrocarbons and keytones. It is recommended that a trial exposure to flux \& cleaning chemicals is performed to ensure sensor is not damaged.

