Reflective Line Reader Sensor
 Type OPB739RWZ

Features:

- Focused for maximum sensitivity
- Phototransistor Output
- 650 nm Visible Red LED to optimize detection of dye based inks

- Low-cost plastic housing
- 24 " minimum 26AWG wire leads
- Optimal operating distance range $0.015^{\prime \prime}$ [.38mm] to $0.045^{\prime \prime}$ [1.14mm]

Description:

The OPB739RWZ is a reflective line reader sensor. The sensor utilizes a visible red (650nm) LED and an NPN silicon phototransistor mounted side by side on converging optical axes in a black plastic housing. The converging light beam makes this sensor capable of detecting line widths as small as $0.004^{\prime \prime}$ [0.1 mm] at the optimum distance of $0.030^{\prime \prime}$ [0.76 mm] from the target. The red LED maximizes the reflected signal contrast of black lines on white backgrounds. Recommended line spacing is $.050^{\prime \prime}$ minimum.
This sensor can be used with Optek's OCB100CZ auto calibration module to reduce variability from sensor to sensor and to achieve a digital output.
Custom electrical, wire, cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Line Reading
- Low Resolution Bar Code Sensing
- Paper edge detection
- Mark detection
- Reflective Optical Encoders

OPB739RWZ
Anode
(Red)

Reflective Line Reader Sensor
 Type OPB739RWZ

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Storage and Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input LED	
Forward DC Current	40 mA
Reverse DC Voltage	2 V
Power Dissipation	100 mW
Output Phototransistor	30 V
Collector-Emitter Voltage	5 V
Emitter-Collector Voltage	100 mW
Power Dissipation	

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input IR LED

V_{F}	Forward Voltage	1.2	2.0	2.3	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}$
λ_{P}	Peak Emission Wavelength	-	650	-	nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$

Output Phototransistor

$\mathrm{V}_{\text {(BR)CE0 }}$	Collector Emitter Breakdown Voltage	30	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {(BR)ECO }}$	Emitter Collector Breakdown Voltage	5	-	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CEO}}$	Collector Dark Current	-	-	100	nA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$
Tr	Rise Time	-	300	-	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{Volts}{ }^{(3)}$
Tf	Fall Time	-	300	-	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$ $\mathrm{R}_{\mathrm{L}}=20 K \Omega$

Coupled Characteristics

$I_{C(O N)}$	On-State Collector Current	0.25	-	-	mA	$\mathrm{d}=0.030^{\prime \prime}(.76 \mathrm{~mm})^{(1)(2)}$ $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{~V}_{\text {CE(SAT) }}$	Collector Emitter Saturation Voltage	-	-	0.4	V	$\mathrm{d}=0.030 \prime(.76 \mathrm{~mm})^{(1)(2)}$ $\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{CX}	Crosstalk Collector Current	-	-	0.05	mA	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ No reflective test surface present

Notes:

1. " d " is the distance from the assembly's lens surface to the reflective surface.
2. Measured using 90% diffuse reflectance white test card as the reflecting surface.
3. Typical values by design. Rise and Fall times are not tested.
4. Methanol or Isopropanol are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones.

Reflective Line Reader Sensor
 Type OPB739RWZ

Example reflective target with

 $0.004 ", 0.008$ ", and $.012^{\prime \prime}$ line widths spaced 0.050 " apart

Typical Output Voltage vs Time

Line Spacing = .050" Paper Speed = 50 inches / second

Typical Performance Curves

Output Current vs. Distance

Relative Ic(on) vs Temperature

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Switches, Reflective, Phototransistor Output category:
Click to view products by TT Electronics manufacturer:

Other Similar products are found below :
LTH-1650-01 HOA1180-106 ITR8307/L24/TR8 RPR-359F OPR5005 EE-SF5-B QRD1114 ITR-20001T ITR-20002 ITR-8307/TR8 ITR9606-F HOA0708-001 HOA0709-001 HOA0709-011 HOA1180-001 HOA1180-002 HOA1397-001 HOA1406-003 HOA2498-002 LTH-209-01 MTRS9520 MTRS1070 NJL5501R-TE1 NJL5902R-2-TE1 EE-SB5 EE-SB5-B EE-SF5 EE-SPY302 EE-SPY311 EE-SPY401 EE-SPY402 EE-SPY411 EE-SPY412 EE-SPZ301A EE-SPZ401A EESB5MW12 EE-SY110 EE-SY113 EE-SY169 EE-SY169A EESY171 EE-SY190 EE-SY199 EE-SY671 EE-SY672 QRD1113 QRE1113 QRE1113GR SFH 9206 RPI-1035

