Resistors

Precision Thin Film Chip Resistors

PFC Commercial Series

- High stability tantalum nitride film
- Available in 0402, 0603, 0805 and 1206
- Absolute TCR to ±10ppm/°C
- Sulfur resistant to ASTM B809-95

All parts are Pb-free and comply with EU Directive 2011/65/EU amended by (EU) 2015/863 (RoHS3)

PFC chip resistor series provides the high precision and ultra stable performance of tantalum nitride resistive film system in 0402, 0603, 0805 and 1206 sizes. The unique characteristics of the passivated tantalum nitride film ensure long term life stability and reliability in most environments.

Qualified for resistance to sulfur bearing gases, the PFC series is an excellent solution for automotive and heavy equipment applications where precision, exceptional reliability with anti-sulfuration characteristics is imperative.

Electrical Data

Model	Power Rating (70°C)	Max Voltage Rating ($\leq \sqrt{P x R}$)	Temperature Range	ESD Sensitivity	Noise	Termination	Substrate
W0402	50mW	75V					
W0603	100mW	75V	-65°C to +150°C			100% matte tin (RoHS	
W0805	250mW	100V		-65°C to +150°C	2KV to 4KV (HBM)	<-25dB	compliant) plated over
W1206	333mW	200V				nickel barrier	

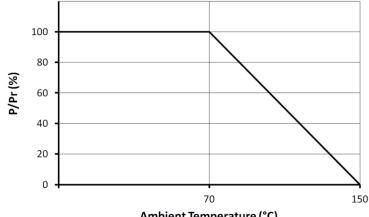
Environmental Data

Environmental Test	Test Method	Performance		
Environmentar rest	Test Metriod	Typical	Maximum	
Sulfuration Test	ASTM B809 (Modified) 105°C Dry, 1000 Hours	±0.02%	±0.05%	
Thermal Shock	MIL-PRF-55342	±0.02%	±0.10%	
Low Temperature Operation	MIL-PRF-55342	±0.01%	±0.05%	
Short Time Overload	MIL-PRF-55342	±0.01%	±0.05%	
High Temperature Exposure	MIL-PRF-55342	±0.03%	±0.10%	
Effects of Solder	MIL-PRF-55342	±0.01%	±0.10%	
Moisture Resistance	MIL-PRF-55342	±0.03%	±0.10%	
Life	MIL-PRF-55342	±0.03%	±0.10%	

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

BI Technologies IRC Welwyn



PFC Commercial Series

Manufacturing Capabilities Data

TCR		Tolerance 0.1% to 5%					
ppm/°C	W0402	W0603	W0805	W1206			
10	100 Ω-16kΩ	100 Ω -50k Ω	100 Ω-100kΩ	100 Ω -400k Ω			
15	50 Ω -16k Ω	50 Ω -50k Ω	50 Ω -100k Ω	50 Ω -400k Ω			
25	15 Ω -30k Ω	10 Ω -100k Ω	10 Ω -267k Ω	10 Ω -1Μ Ω			
50, 100	15 Ω -30 kΩ	5Ω-100kΩ	5 Ω -267k Ω	5 Ω-1ΜΩ			

Power Derating Curve

Ambient Temperature (°C)

Physical Data

←	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ $					
Model	L	W	н	а	b	
W0402	0.04 ±0.003	0.021 ±0.005	0.012 ±0.003	0.008 -0.004, +0.008	0.01 ±0.006	
	(1.02 ±0.07)	(0.53 ±0.12)	(0.3 ±0.08)	(0.2 -0.1/+0.2)	(0.25 ±0.15)	
W0603	0.063 ±0.004	0.031 ±0.004	0.02 ±0.006	0.012 ±0.008	0.015 ±0.009	
	(1.6 ±0.1)	(0.79 ±0.11)	(0.51 ±0.15)	(0.3 ±0.2)	(0.38 ±0.23)	
W0805	0.081 ±0.006	0.05 ±0.007	0.02 ±0.006	0.015 ±0.009	0.016 ±0.008	
	(2.06 ±0.16)	(1.27 ±0.18)	(0.51 ±0.14)	(0.38 ±0.23)	(0.41 ±0.21)	
W1206	0.126 ±0.008	0.063 ±0.005	0.024 ±0.006	0.025 ±0.017	0.025 ±0.017	
	(3.2 ±0.2)	(1.6 ±0.13)	(0.61 ±0.16)	(0.64 ±0.44)	(0.64 ±0.44)	

For PCB mounting pad recommendations see

http://www.ttelectronics.com/TTElectronics/media/ProductFiles/Resistors/ApplicationNotes/TN006-Recommended-Layouts-for-SMD-Resistors.pdf

Construction

Conductors and tantalum nitride resistive element are applied to an alumina substrate. The product is laser trimmed to value, and a protective epoxy coat is applied. The product is then metallized and plated to provide a wrap-around solderable termination with a 100% matte tin finish on a nickel barrier layer. It is 100% tested and provided on standard paper carrier tape.

Special Variants

For PFC resistors with tighter tolerances, SnPb terminations or MIL screening, refer to the separate PFC Special Series datasheet.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

PFC Commercial Series

Ordering Procedure

This product has two valid part numbers:

European (Welwyn) Part Number: W1206R-01-1K0BI (1206, 100ppm/°C, 1 kilohm ±0.1%, Pb-free)

W 1 2 0 6	R - 0 1	-	1 K 0	BI
1 2	3		4	56

1	2	3	4	5	6
Туре	Size	TCR	Value	Tolerance	Termination & Packing
W=PFC	0402	R-12 = ±10ppm/°C	E24 = 3/4 characters	B = ±0.1%	I = Pb-free, Standard pack
	0603	R-11 = ±15ppm/°C	E96 = 3/4 characters R = ohms K = kilohms	D = ±0.5%	All sizes Up to 5000/reel
	0805	R = ±25ppm/°C		F = ±1%	
	1206	R-02 = ±50ppm/°C		G = ±2%	
		R-01 = ±100ppm/°C	M = megohms	J = ±5%	

USA (IRC) Commercial Part Number: PFC-W1206LF-01-1001-B (1206, 100ppm/°C, 1 kilohm ±0.1%, Pb-free)

PFC-	W 1 2 0 6	L F	- 0 1 -	1001	- B
1	2	3	4	5	6

1	2	3	4	5	6	
Family	Model	Termination	TCR	Value	Tolerance	Packing
PFC	W0402	LF = Pb-free (100%Sn)	12 = ±10ppm/°C	3 digits + multiplier	B = ±0.1%	All sizes Up to 5000/reel
	W0603		11 = ±15ppm/°C	R = ohms for	D = ±0.5%	
	W0805		03 = ±25ppm/°C	values <100 ohms	F = ±1%	
	W1206		02 = ±50ppm/°C		G = ±2%	
			01 = ±100ppm/°C		J = ±5%	

* Non-standard pack quantity 1000/reel may be available by special request - contact factory.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

BI Technologies IRC Welwyn

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thin Film Resistors - SMD category:

Click to view products by TT Electronics manufacturer:

Other Similar products are found below :

7-2176089-6 MCW0406MD1001DP500 FCR1206J22R FCR1206J33R 1-2176090-3 1-2176089-6 ERA-3EEB2742V

NCSR250F4M50DTRGF 2176089-1 2176090-4 2176091-3 CMB02070X3000GB200 CPA2512Q6R80FS-T10 4-1625868-7 5-1625868-9 5-18022-5 ERA-3EEB2671V CFR0W4J0220A2P P1206Y1804FNTA CPA2512E68R0FS-T10 CPA2512Q4R70FS-T10 8-2176091-9 2-2176091-0 NCSR150FR003DTRT3F NTR06B5832CTRF NCSR200JR002DTRF RSJ372NL NRC-S12F4751TRF 8-1625868-1 1-2176092-4 4-2176093-9 2176091-9 RT1220P-101-M PLTU0805U1003LST5 PLTU0603U2001LST5 PLTU0805U1001LST5 PLTU0603U4702LST5 4-2176089-0 8-2176091-0 6-2176091-8 3-2176090-3 1-2176092-7 7-2176092-6 7-2176088-7 PCNM2512E1502BST5 2-2176094-5 PCNM2512E3012BST5 4-2176092-6 3-2176091-4 8-2176091-5