TWGME

Description

The LM2576 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3 A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3 V , $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output versions. Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator. The LM2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required. A standard series of inductors optimized for use with the LM2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies. Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.
Note: TheLM2576HV is not produced yet.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range
- 1.23 V to 37 V (57 V for HV version) $\pm 4 \%$ max over line
- and load conditions
- Guaranteed 3A output current
- Wide input voltage range, 40 V up to57V for HV version
- Requires only 4 external components
- $\quad 52 \mathrm{kHz}$ fixed frequency oscillator
- TTL shutdown capability, low power standby mode
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

Simple high-efficiency step-down (buck) regulator
Efficient pre-regulator for linear regulators

- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Typical application Figure 1.(Fixed Output Voltage Versions)

TO263-5L

Pin Assignments

TO220B-5L/TO220-5L

Pin Descriptions

Name	Description
Vin	Input supply voltage
Output	Switching output
Gnd	Ground
Feedback	Output voltage feedback
ON/OFF	ON/OFF shutdown Active is "Low" or floating

Block Diagram

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{~K}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{~K}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{~K}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{~K}$
For ADJ, Version
R1 $=$ Open, R2 $=0 \Omega$
Ordering information

Temperature Range	Output Voltage, V					Package Type
	3.3	5.0	12	15	ADJ	
$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \\ \leq 125^{\circ} \mathrm{C} \end{gathered}$	LM2576HVS-3.3	LM2576HVS -5.0	LM2576HVS-12	LM2576HVS-15	LM2576HVS -ADJ	TO-263
	LM2576S-3.3	LM2576S-5.0	LM2576S -12	LM2576S -15	LM2576S -ADJ	
	LM2576HVT -3.3	LM2576HVT -5.0	LM2576HVT-12	LM2576HVT-15	LM2576HVT-ADJ	TO-220
	LM2576T-3.3	LM2576T-5.0	LM2576T-12	LM2576T -15	LM2576T -ADJ	

Absolute Maximum Ratings
(Note 1)

Parameter	Maximum	Units
Maximum Supply Voltage LM2576 LM2576HV	$\begin{aligned} & 45 \\ & 57 \end{aligned}$	V
ON/OFF Pin Input Voltage	$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\mathbb{1}}$	
Output Voltage to Ground (Steady State)	-1	V
Power Dissipation	Internally Limited	W
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
Minimum ESD Rating ($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)	2	kV
Lead Temperature (Soldering, 10 Seconds)	260	${ }^{\circ} \mathrm{C}$

Operating Ratings

	Parameter	Value
Temperature Range	$-40 \leq T_{J} \leq+125$	Units
LM2576/LM2576HV	${ }^{\circ} \mathrm{C}$	
Supply Voltage		
	40	V
	$5 M$	

Electrical Characteristics LM2576-3.3,LM2576HV -3.3
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-3.3 } \\ \text { LM2576HV }-3.3 \end{gathered}$		Units (Limits)
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2576	$6 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq$ 3A Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	V(Min) V(Max)
Vout	Output Voltage LM2576HV	$6 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 60 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq$ 3A Circuit of Figure 2	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.450 / 3.482 \end{aligned}$	V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\mathbb{I}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	75		\%

Electrical CharacteristicsLM2576-5.0,LM2576HV-5.0

Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576 }-5.0 \\ \text { LM2576HV }-5.0 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Units } \\ & \text { (Limits) } \end{aligned}$
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
Vout	Output Voltage	$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{~L}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	5.0	$\begin{array}{r} 4.900 \\ 5.100 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\mathrm{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
Vout	Output Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{N}} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure 2 } \end{aligned}$	5.0	$\begin{aligned} & \text { 4.800/4.750 } \\ & 5.200 / 5.250 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUt }}$	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {L }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } \end{aligned}$	5.0	$\begin{aligned} & \text { 4.800/4.750 } \\ & 5.225 / 5.275 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ \text { V(Max) } \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	77		\%

Electrical Characteristics LM2576-12, LM2576HV -12
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576 -12 } \\ \text { LM2576HV -12 } \\ \hline \end{gathered}$		$\begin{aligned} & \text { Units } \\ & \text { (Limits) } \end{aligned}$
			Typ	Limit(Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$V_{\text {OUt }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	12	$\begin{aligned} & 11.76 \\ & 12.24 \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
Vout	Output Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure 2 } \end{aligned}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \end{aligned}$	$\begin{gathered} V \\ \mathrm{~V}(\mathrm{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
Vout	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LoAD }} \leq 3 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circcit of Figure 2 } \\ & \hline \end{aligned}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.54 / 12.66 \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

Electrical Characteristics LM2576-15,LM2576HV -15
Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-15 } \\ \text { LM2576HV }-15 \\ \hline \end{gathered}$		$\begin{aligned} & \text { Units } \\ & \text { (Limits) } \end{aligned}$
			Typ	Limit (Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$V_{\text {OUt }}$	Output Voltage	$\mathrm{V}_{\mathbb{N}}=25, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}$ Circuit of Figure 2	15	$\begin{aligned} & 14.70 \\ & 15.30 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ V(\operatorname{Max}) \end{gathered}$
Vout	Output Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 18 \leq \mathrm{V}_{\mathbb{N}} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure 2 } \end{aligned}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.60 / 15.75 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ V(\text { Max }) \end{gathered}$
$\mathrm{V}_{\text {OUt }}$	Output Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, \\ & 18 \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure 2 } \end{aligned}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.68 / 15.83 \end{aligned}$	$\begin{gathered} V \\ \mathrm{~V}(\mathrm{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	88		\%

Electrical Characteristics LM2576 -ADJ, LM2576HV -ADJ

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576 -ADJ } \\ \text { LM2576HV -ADJ } \\ \hline \end{gathered}$		Units(Limits)
			Typ	Limit(Note 2)	
SYSTEM PARAMETERS (Note 3) Test Circuit Figure 2					
$V_{\text {OUt }}$	Feedback Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.5 \mathrm{~A}, \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	1.230	$\begin{array}{r} 1.217 \\ 1.243 \\ \hline \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$V_{\text {OUt }}$	Feedback Voltage LM2576	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq \\ & 40 \mathrm{~V} \mathrm{~V}_{\mathrm{ouT}}=5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	$\begin{aligned} & V \\ & V(\operatorname{Min}) \\ & V(\text { Max }) \end{aligned}$
$V_{\text {out }}$	Feedback Voltage LM2576HV	$\begin{aligned} & 0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 3 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \\ & 60 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\ & \text { Circuit of Figure 2 } \end{aligned}$	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \end{aligned}$	$\begin{gathered} V \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77		\%

All Output Voltage Versions

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathbb{N}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\mathbb{N}}=30 \mathrm{~V}$ for the 15 V version, , LLOAD $=500 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2576-XX } \\ \text { LM2576HV-XX } \end{gathered}$		$\begin{gathered} \text { Units } \\ \text { (Limits) } \end{gathered}$
			Typ	Limit (Note 2)	
DEVICE PARAMETERS					
I_{b}	Feedback Bias Current	$\mathrm{V}_{\text {out }}=5 \mathrm{~V}$ (Adjustable Version Only)	50	100/500	nA
f_{0}	Oscillator Frequency	(Note 8)	52	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \\ & \hline \end{aligned}$	kHz $\mathrm{kHz}(\mathrm{Min})$ $\mathrm{kHz}(\mathrm{Max})$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	Iout $=3 \mathrm{~A}($ (Note 4)	1.4	1.8/2.0	$\stackrel{V}{\mathrm{~V}(\mathrm{Max})}$
DC	Max Duty Cycle (ON)	(Note 5)	98	93	$\begin{gathered} \% \\ \%(\operatorname{Min}) \\ \hline \end{gathered}$
ICL	Current Limit	(Notes 4, 8)	5.8	$\begin{aligned} & 4.2 / 3.5 \\ & 6.9 / 7.5 \end{aligned}$	$\begin{gathered} A \\ A(M \mathrm{Mn}) \\ \mathrm{A}(\mathrm{Max}) \end{gathered}$
IL	Output Leakage Current	$\begin{array}{ll} \text { (Notes 6, 7): } & \text { Output }=-1 \mathrm{~V} \\ & \text { Output }=-1 \mathrm{~V} \end{array}$	7.5	2 30	$\begin{gathered} \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
I_{Q}	Quiescent Current	(Note 6)	5	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
$\mathrm{I}_{\text {StBY }}$	Standby Quiescent Current	$\overline{\mathrm{ON} / \text { OFF Pin }}=5 \mathrm{~V}$ (OFF)	50	200	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \\ \hline \end{gathered}$
$\overline{\text { ON/OFF CONTROL }}$					
$\mathrm{V}_{\text {IH }}$	$\overline{O N} / O F F$ Pin I nnir Innuit I aval	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$	1.4	2.2/2.4	V (Min)
$\mathrm{V}_{\text {IL }}$		Vout $=$ Nominal Output Voltage	1.2	1.0/0.8	V (Max)
I_{H}	$\overline{\text { ON/OFF Pin Input }}$ Current	$\overline{\text { ON/OFF Pin }}=5 \mathrm{~V}$ (OFF)	12	30	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$
IL		$\overline{\mathrm{ON}} / \mathrm{OFF} \mathrm{Pin}=0 \mathrm{~V}(\mathrm{ON})$	0	10	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \\ \hline \end{gathered}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face).
Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2576/LM2576HV is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 5: Feedback pin removed from output and connected to 0V.
Note 6: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V , versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 7: $\mathrm{V}_{\mathbb{N}}=40 \mathrm{~V}$ (60 V for high voltage version).
Note 8: The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protections feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Typical Performance Characteristics (Circuit of Figure 2)

Normalized Output Voltage

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Standby

Quiescent Current
ミ

JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

Switch Saturation Voltage

Minimum Operating Voltage

Line Regulation

INPUT VOLTAGE (V)

Efficiency

INPUT VOLTAGE (V)

Quiescent Current vs Duty Cycle

Dropout Voltage

JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

JUNCTION TEMPERATURE ($\left.{ }^{\circ} \mathrm{C}\right)$

Oscilator Frequency

JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

Feedback Voltage
vs Duty Cycle

Maximum Power Dissipation (TO-263)

Switching Waveforms

Feedback Pin Current

Load Transient

100μ
$V_{\text {OUt }}=15 \mathrm{~V}$
A: Output Pin Voltage, 50V/div
B: Output Pin Current, 2A/div
C: Inductor Current, 2A/div
D: Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $5 \mu \mathrm{~s} / \mathrm{div}$

Test Circuit and Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible.
Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.

Fixed Output Voltage Versions (Figure 2a)

$\mathrm{C}_{\mathrm{IN}}-100 \mu \mathrm{~F}, 75 \mathrm{~V}$, Aluminum Electrolytic
Cout $-1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 - Schottky, MBR360
$\mathrm{L}_{1}-100 \mu \mathrm{H}$, Pulse Eng. PE-92108
$R_{1}-2 k, 0.1 \%$
$\mathrm{R}_{2}-6.12 \mathrm{k}, 0.1 \%$
Adjustable Output Voltage Version (Figure 2b)

$\mathrm{V}_{\text {OUT }} \quad \mathrm{V}_{\text {REF }}\left(+\frac{\mathrm{R}}{\underline{\underline{2}}}\right)$
$\mathrm{R}_{2} \quad \mathrm{R}_{1} \frac{\mathrm{~V}_{\text {OUT- }}}{V_{\text {REF }}} 1$
where $V_{\text {REF }}=1.23 \mathrm{~V}$, R 1 between 1 k and 5 k

Package Information

(1) TO220-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	4.06	4.83	0.160	0.190
b	0.76	1.02	0.030	0.040
C	0.36	0.64	0.014	0.025
D	14.22	15.49	0.560	0.610
E	9.78	10.54	0.385	0.415
e	1.57	1.85	0.062	0.073
e(1)	6.68	6.93	0.263	0.273
F	1.14	1.40	0.045	0.055
H(1)	5.46	6.86	0.215	0.270
J(1)	2.29	3.18	0.090	0.125
L	13.21	14.73	0.520	0.580
$\Phi \mathrm{P}$	3.68	3.94	0.145	0.155
Q	2.54	2.92	0.100	0.115

Package Information

(2) TO263-5L

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by TWGMC manufacturer:
Other Similar products are found below :
NCP1218AD65R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG SJE6600 AZ7500BMTR-E1 SG3845DM NCP1250BP65G NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG NCP81174NMNTXG NCP4308DMTTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G NCP1246ALD065R2G AZ494AP-E1 CR1510-10 NCP4205MNTXG XRP6141ELTR-F RY8017 LP6260SQVF LP6298QVF ISL6121LIB ISL6225CA ISL6244HRZ ISL6268CAZ ISL6315IRZ ISL6420AIAZ-TK ISL6420AIRZ ISL6420IAZ ISL6421ERZ

