Low-Voltage SPDT Analog Switch
UM3156 SC70-6/SC88/SOT363

General Description

The UM3156 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very low propagation delay and $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ resistances while maintaining CMOS low power dissipation. These make it ideal for portable and battery power applications.
The switch conducts signals within power rails equally well in both directions when on, and blocks up to the power supply level when off. Break-before-make is guaranteed.
The select pin has over-voltage protection that allows voltages above V_{CC}, up to 6.5 V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage.
The UM3156 can maintain low power consumption for rail-to-rail signaling as long as the control signal input is held at a level that is greater than V_{IH} minimum and less than V_{IL} maximum by improving the control circuitry input buffer. so the part can be used in mixed voltage rail environments, especially services the mobile handset applications very well allowing for the direct interface with baseband processor general purpose I/Os, and it is no longer necessary to have the control input equal to V_{CC} to maintain low power consumption

Applications

- Sample-and-Hold Circuits
- Battery-Powered Equipment
- Audio and Video Signal Routing
- Communication Circuits

Pin Configurations

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM3156	SC70-6/SC88/SOT363	U73	$3000 \mathrm{pcs} / 7$ Inch Tape \& Reel

Function Table

Select Input	Function
L	B 0 Connected to A
H	B1 Connected to A

Absolute Maximum Ratings

Symbol	Parameter	Limit	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage	-0.5 to +6.5	V
V_{S}	DC Switch Voltage (Note 1)	-0.5 to ($\mathrm{V}_{\mathrm{CC}}+0.5$)	
$\mathrm{V}_{\text {IN }}$	DC IN Voltage (Note 1)	-0.5 to +6.5	
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current @ $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	-50	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Current	128	
$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	DC V ${ }_{\text {CC }}$ or Ground Current	+100	
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	
T_{L}	Junction Lead Temperature (Soldering, 10 Seconds)	260	
$\theta_{\text {JA }}$	Thermal Resistance	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation @ $+85^{\circ} \mathrm{C}$	180	mW

Note 1: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Ratings (Note 2)

Symbol	Parameter	Limit	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage Operating	1.65 to 5.5	V
$\mathrm{V}_{\text {IN }}$	Switch Input Voltage	0 to V_{CC}	
$\mathrm{V}_{\text {IN }}$	Select Input Voltage	0 to V_{CC}	
$\mathrm{V}_{\text {Out }}$	Output Voltage	0 to $\mathrm{V}_{\text {CC }}$	
T_{A}	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{t}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 3.6 V Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	$\begin{gathered} 0 \text { to } 10 \\ 0 \text { to } 5.0 \\ \hline \end{gathered}$	ns/V

Note 2: Select input must be held HIGH or LOW, it must not float.

Electrical Characteristics

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	Temp	Limits ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)			Unit
					Min	Typ	Max	
DC Electrical Characteristics								
	Analog Signal Range		$\mathrm{V}_{\text {CC }}$	Full	0		V_{CC}	V
$\mathrm{I}_{\text {IN }}$	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	0 to 5.5	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$		± 0.05	$\begin{gathered} \pm 0.1 \\ \pm 1 \end{gathered}$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OFF }}$	OFF State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	1.65 to 5.5	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		± 0.05	$\begin{gathered} \pm 0.1 \\ \pm 1 \end{gathered}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage		1.65 to 2.3	Full	1.1			V
			2.3 to 2.7		1.4			
			2.7 to 3.6		1.8			
			3.6 to 4.3		2.1			
			4.3 to 5.5		2.6			
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		1.65 to 2.3	Full			0.4	V
			2.3 to 2.7				0.7	
			2.7 to 3.6				1.0	
			3.6 to 4.3				1.3	
			4.3 to 5.5				1.5	
I_{CC}	Quiescent Supply Current	$\begin{gathered} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ \mathrm{I}_{\mathrm{O}}=0 \end{gathered}$	5.5	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$			$\begin{aligned} & 1.0 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	On-Resistance (Note 3)	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \\ \hline \end{gathered}$	4.5	Full		$\begin{aligned} & 3.0 \\ & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 12 \\ & 15 \\ & \hline \end{aligned}$	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \\ & \hline \end{aligned}$	3.0	Full		$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 20 \end{aligned}$	
		$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA} \end{gathered}$	2.3	Full		$\begin{aligned} & \hline 5.0 \\ & 8.0 \\ & \hline \end{aligned}$	12 30	
		$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} \end{gathered}$	1.65	Full		$\begin{gathered} 6.5 \\ 15 \end{gathered}$	$\begin{aligned} & 20 \\ & 50 \\ & \hline \end{aligned}$	
$\mathrm{R}_{\text {Range }}$	On Resistance Over Signal Range (Note 3, 7)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA} \\ & 0 \leq \mathrm{V}_{\mathrm{R} n} \leq \mathrm{V}_{\mathrm{C}} \end{aligned}$	4.5	Full			25	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA} \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0	Full			50	
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	2.3	Full			100	
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	1.65	Full			300	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Match Between Channels (Note 3, 4, 5)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{Bn}}=3.15 \mathrm{~V} \\ & \hline \end{aligned}$	4.5	Room		0.15		Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=2.1 \mathrm{~V}$	3.0	Room		0.2		
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\text {Bn }}=1.6 \mathrm{~V}$	2.3	Room		0.5		
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15 \mathrm{~V}$	1.65	Room		0.5		
$\mathrm{R}_{\text {FLat }}$	On Resistance Flatness (Note 3, 4, 6)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	5.0	Room		6.0		Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.3	Room		12		
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	2.5	Room		28		
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$	1.8	Room		125		

Union
SEMICITNDUCTIR

Electrical Characteristics (Continued)

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	Temp	Limits ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)			Unit
					Min	Typ	Max	
AC Electrical Characteristics								
$\begin{gathered} \mathrm{t}_{\mathrm{PHL}} \\ \mathrm{t}_{\mathrm{PLH}} \end{gathered}$	Propagation Delay Bus to Bus (Note 9)	$\mathrm{V}_{\mathrm{r}}=$ OPEN	$\begin{gathered} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 2.7 \\ 3.0 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \\ \hline \end{gathered}$	Full			$\begin{aligned} & 1.5 \\ & 1.0 \\ & 0.8 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PLL }} \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Output Enable Time Turn On Time (A to Bn)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 2.7 \\ 3.0 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \end{gathered}$	Full	$\begin{aligned} & 7.0 \\ & 3.5 \\ & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 26 \\ & 15 \\ & 8.6 \\ & 6.2 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time Turn Off Time (A Port to B Port)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	$\begin{gathered} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 2.7 \\ 3.0 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \\ \hline \end{gathered}$	Full	$\begin{aligned} & 3.0 \\ & 2.0 \\ & 1.7 \\ & 0.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 13 \\ & 7.5 \\ & 5.3 \\ & 3.8 \\ & \hline \end{aligned}$	ns
$t_{\text {D }}$	Break Before Make Time (Note 8)		$\begin{gathered} \hline 1.65 \text { to } 1.95 \\ 2.3 \text { to } 2.7 \\ 3.0 \text { to } 3.6 \\ 4.5 \text { to } 5.5 \\ \hline \end{gathered}$	Full	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$			ns
$\mathrm{Q}_{\text {INJ }}$	Charge Injection (Note 8)	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \\ \hline \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.3 \\ & \hline \end{aligned}$	Room		$\begin{aligned} & 9.0 \\ & 4.0 \\ & \hline \end{aligned}$		pC
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 10)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$	1.65 to 5.5	Room		-60		dB
Xtalk	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$	1.65 to 5.5	Room		-54		dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.65 to 5.5	Room		230		MHz
THD	Total Harmonic Distortion (Note 8)	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ $0.5 \mathrm{~V}_{\text {P-P }}$ $\mathrm{f}=600 \mathrm{~Hz}$ to 20 kHz	5.0	Room		0.011		\%

Capacitance								
C_{IN}	IN Pin Input Capacitance (Note 11)	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$						
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	B Port Off Capacitance (Note 11)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				7.5		pF
$\mathrm{C}_{\mathrm{IOA}-\mathrm{ON}}$	A Port Capacitance when Switch is Enabled (Note 11)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				20.1		pF

Note 3: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
Note 4: Parameter is characterized but not tested in production.
Note 5: $\Delta \mathrm{R}_{\mathrm{ON}}=\left|\mathrm{R}_{\mathrm{ON}(\mathrm{B} 0)}-\mathrm{R}_{\mathrm{ON}(\mathrm{B1})}\right|$ measured at identical V_{CC}, temperature and voltage levels.
Note 6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
Note 7: Guaranteed by design.
Note 8: Guaranteed by design.
Note 9: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Note 10: Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{Bn}}\right]$.
Note 11: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is characterized but not tested in production.

Test Circuits/Timing Diagrams

NOTE: Input driven by 50Ω source terminated in 50Ω NOTE: C_{L} includes load and stray capacitance NOTE: Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 1. AC Test Circuit

Figure 2. AC Waveforms

Figure 3. Break Before Make Interval Timing

Figure 4. Break-Before-Make Timing

Figure 5. Charge Injection Test

Figure 6. Off-Isolation

Figure 7. Non-Adjacent Channel-to-Channel Crosstalk

Figure 8. On/Off Capacitance Measurement Setup

Figure 9. Bandwidth

Package Information

UM3156 SC70-6/SC88/SOT363

Outline Drawing

Top View	DIMENSIONS						
	Symbol	MILLIMETERS			INCHES		
		Min	Typ	Max	Min	Typ	Max
	A	0.90		1.10	0.035		0.043
	A1	0.00	0.05	0.10	0.000	0.002	0.004
	A2	0.90	-	1.00	0.035	-	0.039
	b	0.10	0.25	0.35	0.004	0.010	0.014
	c	0.08	0.11	0.22	0.003	0.004	0.009
	D	1.80	2.15	2.20	0.071	0.085	0.087
	E	1.15	1.30	1.35	0.045	0.051	0.053
	E1	2.00	-	2.45	0.079	-	0.096
	e		65BS			026BS	
	L	0.25	-	0.46	0.010	-	0.018
	θ	0°	-	8°	0°	-	8°

Land Pattern

	NOTES: 1. Compound dimension: 2.15×1.30; 2. Unit: mm; 3. General tolerance $\pm 0.05 \mathrm{~mm}$ unless otherwise specified; 4. The layout is just for reference.

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.
All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:
http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc
Add: Unit 606, No. 570 Shengxia Road, Shanghai 201210
Tel: 021-51093966
Fax: 021-51026018
Website: www.union-ic.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Union manufacturer:
Other Similar products are found below :
FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7

