Dual Bidirectional I ${ }^{2}$ C-Bus and SMBus Voltage-Level Translator UM3212M8 MSOP8 UM3212DA DFN8 2.1×1.6 UM3212V8 VSSOP8

General Description

The UM3212 is a dual bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus and SMBus voltage-level translator with an enable (EN) input, and is operational from 1.0 V to $3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {ref(1) }}\right)$ and 1.8 V to $5.5 \mathrm{~V}\left(\mathrm{~V}_{\text {bias(reff(2) }}\right)$.
The UM3212 allows bidirectional voltage translations between 1.0 V and 5 V without the use of a direction pin. The low ON-state resistance (R_{on}) of the switch allows connections to be made with minimal propagation delay. When EN is HIGH, the translator switch is on, and the SCL1 and SDA1 I/O are connected to the SCL2 and SDA2 I/O, respectively, allowing bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a high-impedance state exists between ports.
The UM3212 is not a bus buffer which provides both level translation and physically isolates the capacitance to either side of the bus when both sides are connected. The UM3212 only isolates both sides when the device is disabled and provides voltage level translation when active.
The UM3212 can also be used to run two buses, one at 400 kHz operating frequency and the other at 100 kHz operating frequency. If the two buses are operating at different frequencies, the 100 kHz bus must be isolated when the 400 kHz operation of the other bus is required. If the master is running at 400 kHz , the maximum system operating frequency may be less than 400 kHz because of the delays added by the translator.
As with the standard $\mathrm{I}^{2} \mathrm{C}$-bus system, pull-up resistors are required to provide the logic HIGH levels on the translator's bus. The UM3212 has a standard open-collector configuration of the $I^{2} \mathrm{C}$-bus. The size of these pull-up resistors depends on the system, but each side of the translator must have a pull-up resistor. The device is designed to work with Standard-mode, Fast-mode and Fast-mode Plus $I^{2} \mathrm{C}$-bus devices in addition to SMBus devices. The maximum frequency is dependent on the RC time constant, but generally supports $>2 \mathrm{MHz}$.
When the SDA1 or SDA2 port is LOW, the clamp is in the ON-state and a low resistance connection exists between the SDA1 and SDA2 ports. Assuming the higher voltage is on the SDA2 port when the SDA2 port is HIGH, the voltage on the SDA1 port is limited to the voltage set by VREF1. When the SDA1 port is HIGH, the SDA2 port is pulled to the drain pull-up supply voltage $\left(\mathrm{V}_{\mathrm{pu}(\mathrm{D})}\right)$ by the pull-up resistors. This functionality allows a seamless translation between higher and lower voltages selected by the user without the need for directional control. The SCL1/SCL2 channel also functions as the SDA1/SDA2 channel.
All channels have the same electrical characteristics and there is minimal deviation from one output to another in voltage or propagation delay. This is a benefit over discrete transistor voltage translation solutions, since the fabrication of the switch is symmetrical.
The translator provides excellent ESD protection to lower voltage devices, and at the same time protects less ESD-resistant devices.

Applications

- $I^{2} \mathrm{C}$, SMBus and SPI Level Translation
- Low-Voltage ASIC Level Translation
- Smart Card Readers
- Cell-Phone Cradles
- Portable POS Systems
- Portable Communication Devices
- Low-Cost Serial Interfaces
- Cell-Phones
- GPS
- Telecommunications Equipment

Features

- 2-Bit Bidirectional Translator for SDA and SCL Lines in Mixed-Mode $\mathrm{I}^{2} \mathrm{C}$-Bus Applications
- Standard-Mode, Fast-Mode, Fast-Mode Plus and HS-Mode $I^{2} \mathrm{C}$-Bus and SMBus Compatible
- Less than 3.5 ns Maximum Propagation Delay to Accommodate Standard-Mode and Fast-Mode $I^{2} \mathrm{C}$-Bus Devices and Multiple Masters
- Allows Voltage Level Translation between:

1) 1.0 V VREF 1 and $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5V VREF2
2) 1.2 V VREF 1 and $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5V VREF2
3) 1.8 V VREF 1 and 3.3 V or 5 V VREF2
4) 2.5 V VREF 1 and 5 V VREF2
5) 3.3V VREF1 and 5V VREF2

Pin Configurations

- Open-Drain $\mathrm{I}^{2} \mathrm{C}$-Bus I/O Ports (SCL1, SDA1, SCL2 and SDA2)
- Provides Bidirectional Voltage Translation with no Direction Pin
- Low 3.0 ON-State Connection between Input and Output Ports Provides Less Signal Distortion
- 5 V Tolerant $\mathrm{I}^{2} \mathrm{C}$-Bus I/O Ports to Support Mixed-Mode Signal Operation
- High-Impedance SCL1, SDA1, SCL2 and SDA2 Pins for EN=LOW
- Lock-up Free Operation
- Flow through Pinout for Ease of Printed-Circuit Board Trace Routing
- ESD Protection Exceeds 2000V HBM per JESD22-A114, 200V MM per JESD22-A115, and 1000V CDM per JESD22-C101
- Packages Offered: MSOP8, DFN8, VSSOP8

Top View

(Top View)	

Pin Description

Pin Number	Symbol	Function
1	GND	Ground (0V).
2	VREF1	Low-voltage side reference supply voltage for SCL1 and SDA1.
3	SCL1	Serial clock, low-voltage side; connect to VREF1 through a pull-up resistor.
4	SDA1	Serial data, low-voltage side; connect to VREF1 through a pull-up resistor.
5	SDA2	Serial data, high-voltage side; connect to VREF2 through a pull-up resistor.
6	SCL2	Serial clock, high-voltage side; connect to VREF2 through a pull-up resistor.
7	VREF2	High-voltage side reference supply voltage for SCL2 and SDA2. 8
EN	Switch enable input; connect to VREF2 and pull-up through a high resistor.	

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM3212M8	MSOP8	3212	3000pcs/13Inch Tape \& Reel
UM3212DA	DFN8 2.1 $\times 1.6$	3212	$3000 \mathrm{pcs} / 7 \mathrm{Inch}$ Tape \& Reel
UM3212V8	VSSOP8	VB	$3000 \mathrm{pcs} / 7 \mathrm{Inch}$ Tape \& Reel

Absolute Maximum Ratings (Note 1)

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {ref(1) }}$	Reference Voltage (1)	-0.5 to +6	V
$\mathrm{~V}_{\text {bias(ref)(2) }}$	Reference Bias Voltage (2)	-0.5 to +6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.5 (Note 2) to +6	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Voltage on an Input/Output Pin	-0.5 (Note 2) to +6	V
I_{ch}	Channel Current (DC)	+128	mA
I_{IK}	Input Clamp Current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-50
$\mathrm{~T}_{\mathrm{stg}}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Note 2: The input and input/output negative voltage ratings may be exceeded if the input and input/output clamp current ratings are observed.

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	Voltage on an Input/ Output Pin	SCL1, SDA1, SCL2, SDA2	0	5	V
$\mathrm{~V}_{\text {ref(1) }}$ (Note 3)	Reference Voltage (1)	VREF1	0	5	V
$\mathrm{V}_{\text {bias(ref)(2) }}$ (Note 3)	Reference Bias Voltage (2)	VREF2	0	5	V
$\mathrm{~V}_{\mathrm{I}(\mathrm{EN})}$	Input Voltage on Pin EN		0	5	V
$\mathrm{I}_{\text {sw(pass) }}$	Pass Switch Current			64	mA
$\mathrm{~T}_{\mathrm{amb}}$	Ambient Temperature	Operating in Free-Air	-40	+85	${ }^{\circ} \mathrm{C}$

Note 3: $\mathrm{V}_{\text {ref(1) }} \leq \mathrm{V}_{\text {bias(ref)(2) }}-1 \mathrm{~V}$ for best results in level shifting applications.

Electrical Characteristics

$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max	Unit
$\mathrm{V}_{\text {IK }}$	Input Clamping Voltage	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=0 \mathrm{~V}$				-1.2	V
I_{IH}	HIGH-Level Input Current	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=0 \mathrm{~V} \\ \hline \end{gathered}$				5	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{i}(\mathrm{EN})}$	Input Capacitance on Pin EN	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or 3 V			13		pF
$\mathrm{C}_{\mathrm{io} \text { (off) }}$	Off-State Input/Output Capacitance	$\begin{gathered} \text { SCLn, SDAn; } \\ \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=0 \mathrm{~V} \end{gathered}$			10	12.2	pF
$\mathrm{C}_{\text {io(on) }}$	On-State Input/Output Capacitance	SCLn, SDAn; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=3 \mathrm{~V}$			8	12	pF
$\mathrm{R}_{\text {on }}$	ON-State Resistance (Note 5)	$\begin{gathered} \hline \text { SCLn, } \\ \text { SDAn; } \\ \text { (Note 6) } \\ V_{\mathrm{I}}=0 ; \\ \mathrm{I}_{0}=64 \mathrm{~mA} \end{gathered}$	$\mathrm{EN}=4.5 \mathrm{~V}$		2.0	5.0	Ω
			EN=3V		2.4	6.0	
			$\mathrm{EN}=2.3 \mathrm{~V}$		3.1	8.0	
			EN=1.5V		11	32	
		SCLn, SDAn;	$\mathrm{EN}=4.5 \mathrm{~V}$		4.6	7.5	
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA} \end{aligned}$	EN=3V		50	80	
		SCLn, SDAn; $\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$ $\mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}$	$\mathrm{EN}=2.3 \mathrm{~V}$		50	80	

Note 4: All typical values are at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Note 5: Measured by the voltage drop between the SCL1 and SCL2, or SDA1 and SDA2 terminals at the indicated current through the switch.
ON-state resistance is determined by the lowest voltage of the two terminals.
Note 6: Guaranteed by design.

UM3212

Switching Characteristics (Translating Down)
Over recommended operating free-air temperature range (unless otherwise noted). Values guaranteed by design.

Symbol	Parameter	Test Conditions	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Unit
			Min	Max	Min	Max	Min	Max	
$\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=1.15 \mathrm{~V}$ (see Figure 1).									
${ }_{\text {tple }}$	LOW to HIGH Propagation Delay	from (Input) SCL2 or	0	2.5	0	1.7	0	1.2	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW Propagation Delay	to (Output) SCL1 or SDA1	0	2.5	0	2.0	0	1.3	ns
$\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=0.75 \mathrm{~V}$ (see Figure 1).									
${ }_{\text {tple }}$	LOW to HIGH Propagation Delay	from (Input) SCL2 or	0	2.5	0	1.7	0	1.2	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW Propagation Delay	to (Output) SCL1 or SDA1	0	3.0	0	2.0	0	1.3	ns

Switching Characteristics (Translating Up)

Over recommended operating free-air temperature range (unless otherwise noted). Values guaranteed by design.

Symbol	Parameter	Test Conditions	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Unit
			Min	Max	Min	Max	Min	Max	
$\mathrm{V}_{\mathrm{IEEN}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{TT}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=1.15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=300 \Omega$ (see Figure 1).									
${ }_{\text {tple }}$	LOW to HIGH Propagation Delay	from (Input) SCL1 or	0	2.35	0	1.5	0	1.0	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW Propagation Delay	to (Output) SCL2 or SDA2	0	3.35	0	2.25	0	1.4	ns
$\mathrm{V}_{\mathrm{ILEN}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{TT}}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=0.75 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=300 \Omega$ (see Figure 1).									
$\mathrm{t}_{\text {pLH }}$	LOW to HIGH Propagation Delay	from (Input) SCL1 or	0	2.35	0	1.5	0	1.0	ns
$\mathrm{t}_{\text {PHL }}$	HIGH to LOW Propagation Delay	to (Output) SCL2 or SDA2.	0	3.5	0	2.5	0	1.5	ns

Typical Application Circuit

(1) The applied voltages at $\mathrm{V}_{\text {ref(1) }}$ and $\mathrm{V}_{\text {pu(D) }}$ should be such that $\mathrm{V}_{\text {bias(ref(2) }}$ is at least 1 V higher than $\mathrm{V}_{\text {ref(1) }}$ for best translator operation.
Fig 2. Typical application circuit (switch always enabled)

(1) In the Enabled mode, the applied enable voltage $\mathrm{V}_{\text {I(EN) }}$ and the applied voltage at $\mathrm{V}_{\text {ref(1) }}$ should be such that $\mathrm{V}_{\text {bias(ref)(2) }}$ is at least 1 V higher than $\mathrm{V}_{\text {ref(1) }}$ for best translator operation.

Fig 3. Typical application circuit (switch enable control)

Applications Information

Bidirectional Translation

For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to VREF2 and both pins pulled to HIGH side $\mathrm{V}_{\mathrm{pu}(\mathrm{D})}$ through a pull-up resistor (typically $200 \mathrm{k} \Omega$). This allows VREF2 to regulate the EN input. A filter capacitor on VREF2 is recommended. The $I^{2} \mathrm{C}$-bus master output can be totem pole or open-drain (pull-up resistors may be required) and the $\mathrm{I}^{2} \mathrm{C}$-bus device output can be totem pole or open-drain (pull-up resistors are required to pull the SCL2 and SDA2 outputs to $\mathrm{V}_{\mathrm{pu}(\mathrm{D})}$). However, if either output is totem pole, data must be unidirectional or the outputs must be 3 -stateable and be controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either direction. If both outputs are open-drain, no direction control is needed.
The reference supply voltage $\left(\mathrm{V}_{\mathrm{ref}(1)}\right)$ is connected to the processor core power supply voltage. When VREF2 is connected through a $200 \mathrm{k} \Omega$ resistor to a 3.3 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{pu}(\mathrm{D})}$ power supply, and $\mathrm{V}_{\text {ref(1) }}$ is set between 1.0 V and $\left(\mathrm{V}_{\mathrm{pu}(\mathrm{D})}-1 \mathrm{~V}\right)$, the output of each SCL1 and SDA1 has a maximum output voltage equal to VREF1, and the output of each SCL2 and SDA2 has a maximum output voltage equal to $\mathrm{V}_{\mathrm{pu}(\mathrm{D})}$.

Application Operating Conditions

Refer to Figure 2

Symbol	Parameter	Conditions	Min	Typ (Note 7)	Max	Unit
$\mathrm{V}_{\text {bias(ref)(2) }}$	Reference Bias Voltage (2)		$\mathrm{V}_{\text {ref(1) }}+0.6$	2.1	5	V
$\mathrm{~V}_{\mathrm{I}(\mathrm{EN})}$	Input Voltage on Pin EN		$\mathrm{V}_{\text {ref(1) }}+0.6$	2.1	5	V
$\mathrm{~V}_{\text {ref(1) }}$	Reference Voltage (1)		0	1.5	4.4	V
$\mathrm{I}_{\text {sw(pass) }}$	Pass Switch Current		-	14	-	mA
$\mathrm{I}_{\mathrm{ref}}$	Reference Current	Transistor	-	5	-	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}$	Ambient Temperature	Operating in Free-Air	-40	-	+85	${ }^{\circ} \mathrm{C}$

Note 7: All typical values are at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Sizing Pull-Up Resistor

The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about 15 mA . This ensures a pass voltage of 260 mV to 350 mV . If the current through the pass transistor is higher than 15 mA , the pass voltage also is higher in the ON state. To set the current through each pass transistor at 15 mA , the pull-up resistor value is calculated as:
$R_{P U}=\frac{V_{p u(D)}-0.35 \mathrm{~V}}{0.015 \mathrm{~A}}$
The table below summarizes resistor reference voltages and currents at $15 \mathrm{~mA}, 10 \mathrm{~mA}$, and 3 mA . The resistor values shown in the $+10 \%$ column or a larger value should be used to ensure that the pass voltage of the transistor would be 350 mV or less. The external driver must be able to sink the total current from the resistors on both sides of the UM3212 device at 0.175 V , although the 15 mA only applies to current flowing through the UM3212 device

Pull-Up Resistor Values

Calculated for $\mathrm{V}_{\mathrm{OL}}=0.35 \mathrm{~V}$; assumes output driver $\mathrm{V}_{\mathrm{OL}}=0.175 \mathrm{~V}$ at stated current.

$\mathbf{V}_{\text {pu(D) }}$	Pull-Up Resistor Value ($\mathbf{\Omega})$					
	$\mathbf{1 5 m A}$		$\mathbf{1 0 m A}$		$\mathbf{3 m A}$	
	Nominal	$+\mathbf{1 0 \%}$ (Note 8)	Nominal	$+\mathbf{1 0 \%}$ (Note 8)	Nominal	$+\mathbf{1 0 \%}$ (Note 8)
5 V	310	341	465	512	1550	1705
3.3 V	197	217	295	325	983	1082
2.5 V	143	158	215	237	717	788
1.8 V	97	106	145	160	483	532
1.5 V	77	85	115	127	383	422
1.2 V	57	63	85	94	283	312

Note 8: $+10 \%$ to compensate for V_{CC} range and resistor tolerance.

Package Information

UM3212M8: MSOP8

Outline Drawing

				MENS	ONS		
		MIL	IME	ERS		NCHE	
	Symbor	Min	Typ	Max	Min	Typ	Max
$\stackrel{\leftrightarrow}{\square} \square^{4}$	A	-	-	1.10	-	-	0.043
\square	A1	0.02	-	0.15	0.0008	-	0.006
-	A2	0.75	0.86	0.95	0.030	0.034	0.037
	A3	0.29	0.39	0.49	0.011	0.015	0.019
	b	0.22	-	0.38	0.009	-	0.015
Pnentio (\quad il il il	c	0.08	0.15	0.23	0.003	0.006	0.009
$80.60 \mathrm{~mm} \times 0.038 \mathrm{DP}$ $\rightarrow\left\|{ }^{\circ}+\right\|{ }^{\circ}+1$	D	2.90	3.00	3.10	0.114	0.118	0.122
Top View End View	E	2.90	3.00	3.10	0.114	0.118	0.122
-	E1	4.70	4.90	5.10	0.185	0.193	0.201
$\frac{17}{4+}$	E3	2.85	2.95	3.05	0.112	0.116	0.120
Side View	e		.65BS			026BS	
	L	0.40	0.60	0.80	0.016	0.024	0.031
	θ	0°	-	8°	0°	-	8°

Land Pattern

	NOTES: 1. Compound dimension: 3.00×3.00; 2. Unit: mm; 3. General tolerance $\pm 0.05 \mathrm{~mm}$ unless otherwise specified; 4. The layout is just for reference.

Tape and Reel Orientation

UM3212

UM3212DA: DFN8 2.1×1.6

Outline Drawing

	DIMENSIONS						
	Symbol	MILLIMETERS			INCHES		
		Min	Typ	Max	Min	Typ	Max
	A	0.50	0.575	0.605	0.020	0.023	0.024
	A1	0.00	-	0.05	0.000	-	0.002
	A3	0.15 TYP			0.006 TYP		
	b	0.20	0.25	0.30	0.008	0.010	0.012
	D	2.05	2.10	2.175	0.081	0.083	0.086
	D2	1.60	1.70	1.80	0.063	0.067	0.071
	E	1.55	1.60	1.675	0.061	0.063	0.066
	E2	0.30	0.40	0.50	0.012	0.016	0.020
	e	0.50 TYP			0.020 TYP		
	L	0.275	-	0.38	0.011	-	0.015

Land Pattern

Tape and Reel Orientation

UM3212

UM3212V8: VSSOP8

Outline Drawing

Top View	End View	DIMENSIONS						
		Symbol	MILLIMETERS			INCHES		
			Min	Typ	Max	Min	Typ	Max
		A	0.60	0.75	0.90	0.023	0.029	0.035
		A1	0.00	0.05	0.10	0.000	0.002	0.004
		A2	0.60	0.70	0.80	0.023	0.027	0.031
		b	0.17	-	0.27	0.007	-	0.011
		c	0.08	-	0.23	0.003		0.009
		D	1.90	2.00	2.10	0.075	0.079	0.083
		E	2.20	2.30	2.40	0.086	0.090	0.094
		E1	3.00	3.10	3.20	0.118	0.122	0.126
		e		.50BS			020BS	
		L	0.20	0.28	0.35	0.008	0.011	0.014
		θ	0°	3°	6°	0°	3°	6°

Land Pattern

	NOTES: 1. Compound dimension: 2.00×2.30; 2. Unit: mm; 3. General tolerance $\pm 0.05 \mathrm{~mm}$ unless otherwise specified; 4. The layout is just for reference.

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.
All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:
http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc
Add: Unit 606, No. 570 Shengxia Road, Shanghai 201210
Tel: 021-51093966
Fax: 021-51026018
Website: www.union-ic.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by Union manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT1G NLSX0102FCT2G PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSV4T244EMUTAG NLSX5011MUTCG NLVSX4373MUTAG NB3U23CMNTAG NLVPCA9306AMUTCG
NLSX3013BFCT1G NLSX3012DMR2G NLA9306MU3TCG NVT2001GMZ P3A9606JKZ NLVSV1T244MUTBG NLSX5011AMUTAG
74AXP1T34GWH MS4553S HT7660ARZ RS0108YQ20 UM3204Q UM3204UE UM3204H UM3208UK UM3202Q RS8T245YTSS24
UM3308UK UM3212M8 UM3304QA AW39104FOR RS0101YH6 CLVC16T245MDGGREP CAVCB164245MDGGREP NTS0102DPQ100H FXLA104UM12X FXMA2102UMX PI4ULS5V201TAEX CD40109BPWR SY89321LMG-TR SY100ELT22ZG TXS0102DCTRE4 MC10H350FNG MC10H125FNR2G MC100EPT21MNR4G MC100EP91DWG MAX13030EETE+ NLSX3018MUTAG

