

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

UM3301B *SOT563* UM3301DA *DFN6 1.45×1.0*

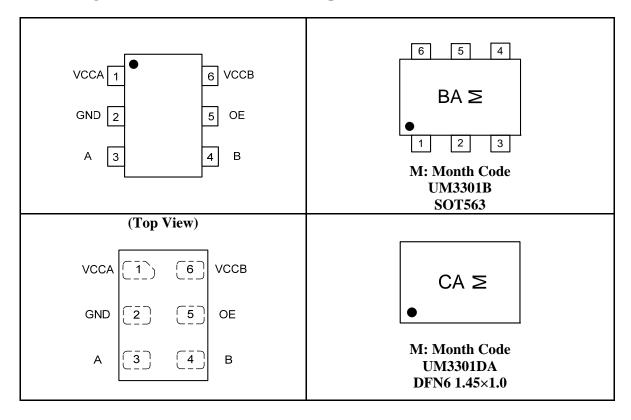
General Description

The UM3301B/UM3301DA series is one channel level translator with auto direction sensing. This 1-channel non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track $V_{\rm CCA}$. $V_{\rm CCA}$ accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track $V_{\rm CCB}$. $V_{\rm CCB}$ accepts any supply voltage from 1.65V to 5.5V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5V voltage nodes. Both I/O ports are auto-sensing, thus no direction control pin is required, making it ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The UM3301B/UM3301DA operates at a guaranteed data rate of 20Mbps over the entire specified operating voltage range. Within specific voltage domains, higher data rates are up to 100Mbps. When the output-enable (OE) input is low, all outputs are placed in the high-impedance state. The UM3301B/UM3301DA is designed so that the OE input circuit is designed to track $V_{\rm CCA}$. To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull down resistor, the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The UM3301DA is available in 1.45mm×1.0mm DFN6 package while the UM3301B is packaged in a SOT563 package.

Applications

- Low-Voltage ASIC Level Translation
- Cell-Phone Cradles
- Portable POS Systems
- Portable Communication Devices
- Low-Cost Serial Interfaces
- Cell-Phones
- GPS
- Telecommunications Equipment


Features

- 1.2V to 3.6V on A Port and 1.65V to 5.5V on B Port ($V_{CCA} \le V_{CCB}$)
- V_{CC} Isolation Feature–If Either V_{CC} Input is at GND, All Outputs are in the High-Impedance State
- OE Input Circuit Referenced to V_{CCA}
- Low Power Consumption
- Latch-up Performance Exceeds 100mA
- ±5kV ESD Protection on B Ports

Pin Configurations

Top View

Pin Description

Pin	Name	Function
1	V_{CCA}	A-Port Supply Voltage. $1.2V \le V_{CCA} \le 3.6V$ and $V_{CCA} \le V_{CCB}$.
2	GND	Ground.
3	A	Input/Output A. Referenced to V _{CCA} .
4	В	Input/Output B. Referenced to V _{CCB} .
5	OE	3-State Output Enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
6	V_{CCB}	B-Port Supply Voltage. 1.65V≤V _{CCB} ≤5.5V.

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM3301B	SOT563	BA	3000pcs/7Inch Tape & Reel
UM3301DA	DFN6 1.45×1.0	CA	3000pcs/7Inch Tape & Reel

Absolute Maximum Ratings (Note 1)

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter		Value	Unit
V_{CCA}	Supply Voltage Range		-0.5 to +4.5	V
V_{CCB}	Supply Voltage Range		-0.5 to +6.5	V
V_{I}	Input Voltage Range	A Ports	-0.5 to +4.5	V
V _I	input voltage Kange	B Ports	-0.5 to +6.5	V
V	Voltage Range Applied to Any Output in the High-Impedance or	-0.5 to +4.5	V	
V_{O}	Power-Off State	-0.5 to +6.5	V	
V	Voltage Range Applied to Any	A Ports	-0.5 to (V _{CCA} +0.5)	V
V_{O}	Output in the High or Low State (Note 2)	B Ports	-0.5 to (V _{CCB} +0.5)	V
I_{IK}	Input Clamp Current	$V_I < 0$	-50	mA
I_{OK}	Output Clamp Current	$V_0 < 0$	-50	mA
I_{O}	Continuous Output Current		±50	mA
	Continuous Current through V _{CCA} , V _{CCA}	±100	mA	
T_{OP}	Operating Temperature Range		-40 to +85	°C
T_{STG}	Storage Temperature Range		-65 to +150	°C

Note 1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 2. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

Recommended Operating Conditions (Note 3, 4)

Symbol	Paramete	r	V _{CCA}	V_{CCB}	Min	Max	Unit
V_{CCA}	Supply Voltage				1.2	3.6	V
V_{CCB}	Supply voit	age			1.65	5.5	V
V	High Level Input	Data Inputs	1.2V to 3.6V	1.65V to 5.5V	V _{CCI} ×0.65 ^{(N}	ote5) V _{CCI}	V
V_{IH}	Voltage	OE	1.2V to 3.6V	1.65V to 5.5V	$V_{CCA} \times 0.65$	5.5	V
V	Low Level Input	Data Inputs	1.2V to 3.6V	1.65V to 5.5V	$0 V_{CC}$	×0.35 ^(Note5)	V
$V_{ m IL}$	Voltage	OE	1.2V to 3.6V	1.65V to 5.5V	0	$V_{\rm CCA} \times 0.35$	V
17	Voltage Range Applied to Any Output in the	A-Port	1 201 1 2 601	1 (5)14, 5 5)1	0	3.6	3.7
V_{O}	High-Impedance or Power-Off State	B-Port	1.2V to 3.6V	1.65V to 5.5V	0	5.5	V
	Innut Transition	A-Port Inputs	1.2V to 3.6V	1.65V to 5.5V		40	
$\Delta t/\Delta V$	Input Transition Rise or Fall Time B-Port Inputs		1.2V to 3.6V	1.65V to 3.6V		40	ns/V
	Kise of Fall Tillie	B-Port Inputs	1.2 V 10 3.0 V	4.5V to 5.5V		30	

Note 3. The A and B sides of an unused data I/O pair must be held in the same state, i.e., both at $V_{\rm CCI}$ or both at GND.

Note 4. V_{CCA} must be less than or equal to V_{CCB} and must not exceed 3.6 V.

Note 5. V_{CCI} is the supply voltage associated with the input port.

Electrical Characteristics (Note 6, 7)
Over recommended operating free-air temperature range (unless otherwise noted)

	Daa	Took Conditions	X 7	T 7	$T_A = 1$	25°C	-40°C to	85°C	Unit
	Parameter	Test Conditions	V_{CCA}	$\mathbf{V}_{ ext{CCB}}$	Min	Max	Min	Max	Unit
	V_{OHA}	I _{OH} =-20μA	1.2V		1.1				V
	V OHA	10H20μΑ	1.4V to 3.6V				V_{CCA} -0.4		V
	V_{OLA}	I _{OL} =20μA	1.2V					0.4	V
		1 ₀ L-20μΑ	1.4V to 3.6V					0.4	, ,
	V_{OHB}	I _{OH} =-20μA		1.65V to 5.5V			V_{CCB} -0.4		V
	V_{OLB}	I _{OL} =20μA		1.65V to 5.5V				0.4	V
I_{I}	OE	$V_I = V_{CCI}$ or GND	1.2V to 3.6V	1.65V to 5.5V		±1		±2	μΑ
,	A Port	$V_{\rm I}$ or $V_{\rm O}$ =0 to 3.6V	0V	0V to 5.5V		±1		±2	4
I_{off}	B Port	$V_{\rm I}$ or $V_{\rm O}$ =0 to 5.5V	0V to 3.6V	0V		±1		±2	μА
I_{OZ}	A or B Port	OE=GND	1.2V to 3.6V	1.65V to 5.5V		±1		±2	μΑ
			1.2V	1.65V to 5.5V	0.06				
	T	V _I =V _{CCI} or GND	1.4V to 3.6V	1.65V to 5.5V				5 2	4
	I_{CCA}	$I_O=0$	3.6V	0V					μΑ
			0V	5.5V				-2	
			1.2V	1.65V to 5.5V	3.4				
	ī	$V_I = V_{CCI}$ or GND	1.4V to 3.6V	1.65V to 5.5V				5	۸
	I_{CCB}	$I_O=0$	3.6V	0V				-2	μΑ
			0V	5.5V				2	
	$I_{CCA}+I_{CCB}$	$V_I = V_{CCI}$ or GND	1.2V	1.65V to 5.5V	3.5				μΑ
	1CCA + 1CCB	$I_{O}=0$	1.4V to 3.6V	1.65V to 5.5V				10	μΑ
	I_{CCZA}	$V_I = V_{CCI}$ or GND	1.2V	1.65V to 5.5V	0.05				μΑ
	1CCZA	I _O =0, OE=GND	1.4V to 3.6V	1.65V to 5.5V				5	μπ
	I_{CCZB}	$V_I = V_{CCI}$ or GND	1.2V	1.65V to 5.5V	3.3				μΑ
		I _O =0, OE=GND	1.4V to 3.6V	1.65V to 5.5V				5	μι
C_{i}	OE		1.2V to 3.6V	1.65V to 5.5V	4.5				pF
C_{iO}	A Port B Port		1.2V to 3.6V	1.65V to 5.5V	12 15				pF

Note 6. V_{CCI} is the supply voltage associated with the input port. Note 7. V_{CCO} is the supply voltage associated with the output port.

Switching Characteristics

 $T_A = +25$ °C, $V_{CCA} = 1.2V$

Domomoton	From	To	V_{CCB} =1.8 V	V_{CCB} =2.5 V	$V_{CCB}=3.3V$	$V_{CCB}=5V$	Unit
Parameter	(Input)	(Output)	Тур	Тур	Тур	Тур	Unit
4	A	В	11	9.6	9.4	11.2	m.c
t_{pd}	В	A	12	10.8	10	10	ns
4	OE	A	0.5	0.5	0.5	0.5	
t _{en}	OE	В	0.5	0.5	0.5	0.5	μs
4	OE	A	114	118	118	114	m.c
$t_{ m dis}$	OE	В	480	450	265	160	ns
$t_{rA,}t_{fA}$	A Port Rise and Fall Time		5	5	5	5	ns
$t_{\mathrm{rB,}}t_{\mathrm{fB}}$	B Port Rise and Fall Time		3.2	2.9	2.8	3.2	ns
$t_{SK(O)}$	Channel-t	o-Channel	0.5	0.5	0.5	1.5	ns
Max Data Rate			20	20	20	20	Mbps

Switching Characteristics

Over recommended operating free-air temperature range, V_{CCA} =1.5V±0.1V (unless otherwise noted)

Parameter	From	To (Output)	V_{CCB} =1.8V ±0.15V		V_{CCB} =2.5V ±0.2V		V_{CCB} =3.3V ± 0.3 V		$V_{CCB}=5V$ $\pm 0.5V$		Unit
	(Input)	(Output)	Min	Max	Min	Max	Min	Max	Min	Max	
4	A	В	2	15	1.2	11	1.1	10	1	10	1 1.0
t_{pd}	В	A	1	15	0.9	12	0.5	12	0.3	13	ns
+	OE	A		1		1		1		1	110
t _{en}	OL	В		1		1		1		1	μs
4	OE	A		180		140		100		100	nc
$t_{ m dis}$		В		550		550		530		110	ns
$t_{rA,}t_{fA}$		se and Fall me	1.5	5.0	1.5	5.0	1.5	5.0	1.5	5.0	ns
$t_{rB,}t_{fB}$		se and Fall me	0.9	4.5	0.6	3.5	0.5	3.0	0.4	4.0	ns
$t_{SK(O)}$	Channel-t	o-Channel		0.5		0.5		0.5		0.5	ns
Max Data Rate			40		40		40		40		Mbps

Switching Characteristics

Over recommended operating free-air temperature range, V_{CCA} =1.8V±0.15V (unless otherwise noted)

Parameter	From	To	V_{CCB} =1.8V ±0.15V		V_{CCB} =2.5V ±0.2V		V _{CCB} =3.3V ±0.3V		V _{CCB} =5V ±0.5V		Unit
	(Input)	(Output)	Min	Max	Min	Max	Min	Max	Min	Max	
4	A	В	1.6	12	1.4	10	1.3	9	1.2	9	1 1.0
t_{pd}	В	A	1.5	12	1.3	8.5	1	8	0.9	8	ns
4	OE	A		1		1		1		1	
t_{en}	OE	В		1		1		1		1	μs
4	OE	A		130		130		130		100	n.c
$t_{ m dis}$	OE	В		200		550		450		200	ns
$t_{rA,} t_{fA}$	A Port Rise and Fall Time		1	4.2	1.1	4.0	1.1	4.0	1.1	4.0	ns
$t_{rB,}t_{fB}$	B Port Rise and Fall Time		0.9	4	0.6	4	0.5	4	0.4	4	ns
$t_{SK(O)}$	Channel-t	o-Channel		0.5		0.5		0.5		0.5	ns
Max Data Rate			60		60		60		60		Mbps

Switching Characteristics

Over recommended operating free-air temperature range, V_{CCA} =2.5V±0.2V (unless otherwise noted)

Parameter	From	To (Output)		V_{CCB} =2.5V ±0.2V		V_{CCB} =3.3V ±0.3V		=5V 5V	Unit
	(Input)	(Output)	Min	Max	Min	Max	Min	Max	
4	A	В	1.1	8.9	1	7.8	0.9	7.2	1 1.0
t_{pd}	В	A	1.2	8.9	1.1	8	0.9	7.6	ns
4	OE	A		1		1		1	
t _{en}	OE	В		1		1		1	μs
4	OE	A		150		150		150	1 1.0
$t_{ m dis}$	OE	В		200		300		250	ns
$t_{rA,} t_{fA}$	A Port Rise a	nd Fall Time	0.8	3	0.8	3	0.8	3	ns
$t_{ m rB,}t_{ m fB}$	B Port Rise a	nd Fall Time	0.7	3	0.5	3	0.4	3	ns
$t_{SK(O)}$	Channel-t		0.5		0.5		0.5	ns	
Max Data Rate			100		100		100		Mbps

Switching Characteristics Over recommended operating free-air temperature range, V_{CCA} =3.3V±0.3V (unless otherwise noted)

Parameter	From	To (Output)	V _{CCB} =3.3V ±0.3V		$V_{CCB}=5V$ $\pm 0.5V$		Unit
	(Input)		Min	Max	Min	Max	
4	A	В	0.9	7	0.8	7	19 G
$t_{ m pd}$	В	A	1	7	0.9	7	ns
4	OE	A		1		1	
t_{en}	OE	В		1		1	μs
4	OF	A		150		120	
t_{dis}	OE	В		150		200	ns
t_{rA}, t_{fA}	A Port Rise a	and Fall Time	0.7	3.5	0.7	3.5	ns
$t_{\rm rB}$, $t_{\rm fB}$	B Port Rise a	B Port Rise and Fall Time			0.4	3.0	ns
$t_{ m SK(O)}$	Channel-to	o-Channel		0.5		0.5	ns
Max Data Rate			100		100		Mbps

Applications Information

The UM3301B/UM3301DA ESD protected level translator provides level shifting necessary to allow data transfer in a multi-voltage system. Externally applied voltages, V_{CCA} and V_{CCB} set the logic levels on either side of device. A low voltage signal present on V_{CCA} side of the device appears as a high voltage logic signal on the V_{CCB} side of the device, and vice-versa.

Block Diagram

The UM3301B/UM3301DA (block diagram see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a dc state, the output drivers of the UM3301B/UM3301DA can maintain a high or low, but are designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing towards the opposite direction.

The output one shot detects rising or falling edges on the A or B ports. During a rising edge, the one shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one shot turns on the NMOS transistors (T2, T4) for a short duration, which speeds up the high-to-low transition.

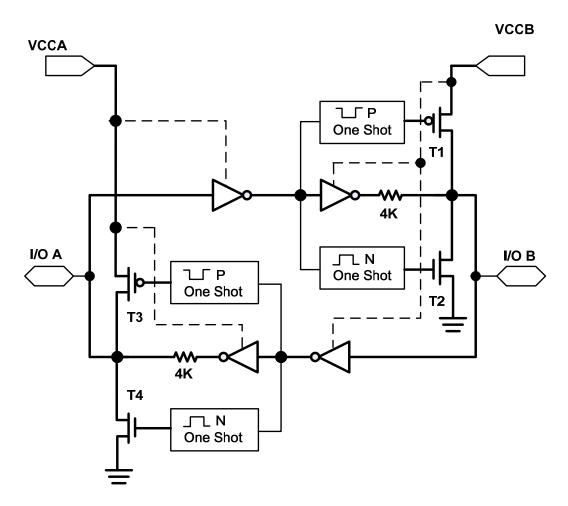
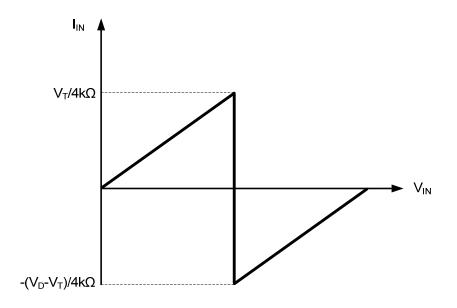



Figure 1 Block Diagram of UM3301B/UM3301DA I/O Cell

Input Driver Requirements

Typical I_{IN} vs. V_{IN} characteristics of the UM3301B/UM3301DA are shown in Figure 2. For proper operation, the device driving the data I/Os of the UM3301B/UM3301DA must have drive strength of at least $\pm 2mA$.

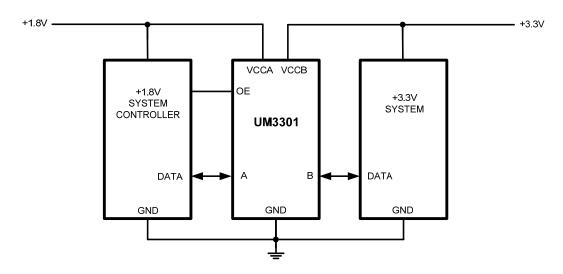
A: V_T is the input threshold voltage of the UM3301B/UM3301DA (typical V_{CCI}/2). B: V_D is the supply voltage of the external driver. **Figure 2 Typical I**_{IN} **vs. V**_{IN} **Curve**

Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \ge V_{CCB}$ does not damage the device, so any power supply can be ramped up first. The UM3301B/UM3301DA has circuitry that disables all output ports when either V_{CC} is switched off $(V_{CCA/B} = 0V)$.

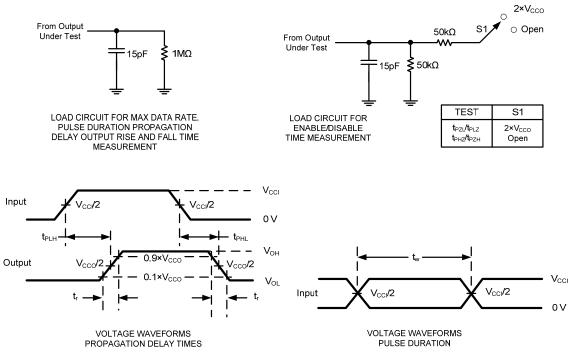
Enable and Disable

The UM3301B/UM3301DA has an OE input that is used to disable the device by setting OE=low, which places all I/Os in the high-impedance (Hi-Z) state. The disable time (t_{dis}) indicates the delay between when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.


Pull-up or Pull-down Resistors on I/O Lines

The UM3301B/UM3301DA is designed to drive capacitive loads of up to 70pF. The output drivers of the UM3301B/UM3301DA have low dc drive strength. External pull-up or pull-down resistors need to be higher than $50k\Omega$.

For the same reason, the UM3301B/UM3301DA should not be used in open-drain system, such as I^2C or 1-wire system.

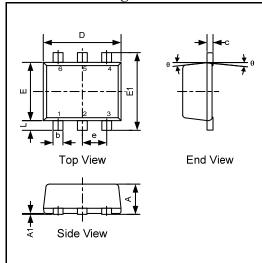


Typical Operating Circuit

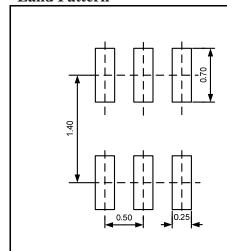
Figure 3 Typical Operating Circuit

Test Circuits

- A. C_L includes probe and jig capacitance.
- B. All input pulses are supplied by generators having the following characteristics: PRR≤10MHz, Z₀=50Ω,dv/dt≥1V/ns. C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .
- E. V_{CCI} is the V_{CC} associated with the input port. F. V_{CCO} is the V_{CC} associated with the output port.
- G. All parameters and waveforms are not applicable to all devices.

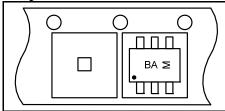

Figure 4 Load Circuits and Voltage Waveforms

Package Information


UM3301B SOT563

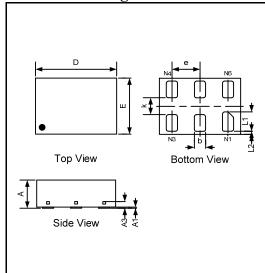
Outline Drawing

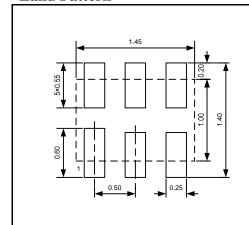
	DIMENSIONS										
Cb al	MILI	LIMET	ERS]	INCHES						
Symbol	Min	Тур	Max	Min	Min Typ						
A	0.525	0.60	0.62	0.021	0.023	0.024					
A1	0.00	-	0.05	0.000	-	0.002					
b	0.15	-	0.30	0.006	-	0.012					
c	0.09	-	0.18	0.004	-	0.007					
D	1.50	1.60	1.70	0.059	0.063	0.067					
Е	1.10	1.20	1.30	0.043	0.047	0.051					
E1	1.50	1.60	1.70	0.059	0.063	0.067					
e	0	.50TYI)	C	.020TY	P					
L	0.10	0.20	0.30	0.004	0.008	0.012					
θ		7°REF		7°REF							


Land Pattern

NOTES:

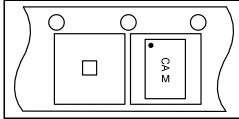
- 1. Compound dimension: 1.60×1.20;
- 2. Unit: mm;
- 3. General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.


Tape and Reel Orientation


UM3301DA DFN6 1.45×1.0

Outline Drawing

	DIMENSIONS										
Crombal	MILI	LIME	TERS	INCHES							
Symbol	Min	Тур	Max	Min	Тур	Max					
A	-	•	0.60	-	ı	0.024					
A1	0.00	-	0.05	0.000	-	0.002					
A3	0.12REF			C	.005RE	F					
b	0.15	0.20	0.25	0.006	0.008	0.010					
D	1.35	-	1.526	0.053	-	0.060					
Е	0.924	-	1.076	0.036	-	0.042					
e	0	.50TY	P	0	.020TY	P					
k	0.20	-	-	0.008	-	-					
L1	0.25	-	0.40	0.010	-	0.016					
L2	0.00	-	0.10	0.000	-	0.004					


Land Pattern

NOTES:

- 1. Compound dimension: 1.45×1.00;
- 2. Unit: mm;
- 3. General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc

Add: Unit 606, No.570 Shengxia Road, Shanghai 201210

Tel: 021-51093966 Fax: 021-51026018

Website: www.union-ic.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Union manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT1G NLSX0102FCT2G PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSX5011MUTCG NLVSX4373MUTAG NB3U23CMNTAG NLSX3013BFCT1G NLSX3012DMR2G
NLA9306MU3TCG NVT2001GMZ PI4ULS3V504AZMAEX NLSX5011AMUTAG 74AXP1T34GWH ST2149BQTR MC100ELT21DR2G
MC100LVELT22MNRG MC10ELT20DR2G MC10EPT20MNR4G MC14504BFELG NLSV4T3234FCT1G NLSX3378BFCT1G
RS0104YQ RS0102YVS8 RS0202XM RS4T245XTSS16 RS1T45XH6 RS0101YUTDV6 RS8T245XTSS24-Q1 UM3208QA UM3208H
UM3212V8 UM3304UE UM3304 UM3304QT UM3202H UM3301DA UM3308 AIPTS0108TA20.TR CD4049UBMT/TR
RS0102YUTDS8 RS0204YUTQH12 RS0102YTDB8 RS0101YC6 RS0204YQ AW39204QNR AW39114FOR