

0.5 \Omega Low-Voltage Dual SPDT Analog Switch

UM4684H *CSP10 2.0×1.5* UM4684EEUE *MSOP10*

General Description

The UM4684 is a sub 1 Ω (0.5 Ω at 2.7V) dual SPDT analog switch designed for low voltage applications.

The UM4684 has on-resistance matching(less than 0.05Ω at 2.7V) and flatness (less than 0.2Ω at 2.7V) that are guaranteed over the entire voltage range. Additionally, low logic thresholds make the UM4684 an ideal interface to low voltage DSP control signals.

The UM4684 has fast switching speed with break-before-make guaranteed. In the ON condition, all switching elements conduct equally in both directions. OFF-isolation and crosstalk is -69dB at 100kHz.

The UM4684 is built on high-density low voltage CMOS process, and contains the additional benefit of 2000V ESD protection.

As a committed partner to the community and the environment, Union manufactures this product with lead (Pb)-free device terminations.

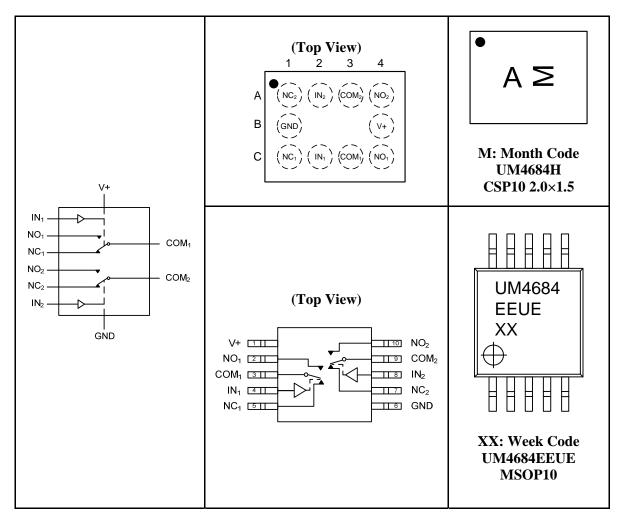
Applications

- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- PCMCIA Cards
- Battery Operated Systems
- Relay Replacement
- Power Routing
- Communication Circuits

Features

- CSP10 & MSOP10 Packages
- ESD Protection >2000V
- +1.8V to +5.5V Single Supply Operation
- NC Switch R_{ON} : 0.5 Ω (+2.7V Supply)
- NO Switch R_{ON} : 0.6 Ω (+2.7V Supply)
- R_{ON} Match between Channels: 0.05Ω Max (+2.7V Supply)
- R_{ON} Flatness over Signal Range: 0.2Ω Max (+2.7V Supply)
- 1.8V Logic Compatibility
- Low Crosstalk: -69dB (100kHz)
- High Off-Isolation: -69dB (100kHz)

Ordering Information


Part Number	Temp. Range	Packaging Type	Marking Code	Shipping Qty
UM4684H	-40°C to 85°C	CSP10 2.0×1.5	А	3000pcs/7 Inch Tape & Reel
UM4684EEUE	-40°C to 85°C	MSOP10	UM4684EEUE	3000pcs/13 Inch Tape & Reel

Pin Configurations

Top View

Ball Mapping for UM4684H

	1	2	3	4
А	NC ₂	IN_2	COM ₂	NO ₂
В	GND			V+
С	NC ₁	IN ₁	COM₁	NO ₁

Transparent Top View

Pin Description

Pin	Pin N	umber	
CSP10		MSOP10	Function
NC_	A1, C1	5,7	Analog Switch—Normally Closed Terminal
IN_	A2, C2	4, 8	Digital Control Input
COM_	A3, C3	3, 9	Analog Switch—Common Terminal
NO_	A4, C4	2, 10	Analog Switch—Normally Open Terminal
V+	B4	1	Positive Supply Voltage Input
GND	B1	6	Ground

Function Table

IN_	NO_	NC_
0	OFF	ON
1	ON	OFF

Absolute Maximum Ratings (Note 1)

Parameter	Value	Unit	
Voltage on V+ Pin (Reference to GND)		-0.3 to +6	V
Voltage on IN_, COM_, NC_, NO_ Pins (Note 2) (Reference to GND)		-0.3 to (V ₊ +0.3)	V
Continuous Current (NO_, NC_, COM_	± 300	mA	
Peak Current (Pulsed at 1 ms, 10% Duty	v Cycle)	± 500	mA
Storage Temperature		-65 to 150	°C
Package Solder Reflow Conditions IR/Convection		250	°C
(Note 3) ESD per Method 3015.7		>2	kV
Power Dissipation (Packages) (Note 4)	CSP10 (Note 5)	457	mW

- Note 1: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note 2: Signals on NC_, NO_, or COM_ or IN_ exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- Note 3: Refer to IPC/JEDEC (J-STD-020B).
- Note 4: All bumps welded or soldered to PC Board.
- Note 5: Derate 5.7mW/°C above 70°C.

Electrical Characteristics (V₊=3V, $\pm 10\%$ deviation, V_{IN}=0.5 or 1.4V (Note 6))

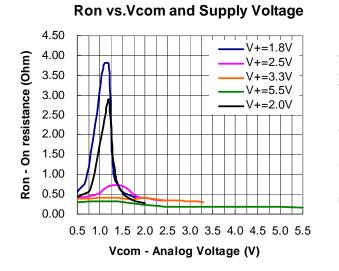
D		Test Conditions	Тетр	(-4	Limits 40°C to 85°	C)		
Parameter	Symbol	Otherwise Unless Specified	(Note 7)	Min (Note 9)	Typ (Note 8)	Max (Note 9)	Unit	
Analog Switch					• · · · · ·	• · · · ·		
Analog Signal Range (Note 10)	$V_{ m NO}$ $V_{ m NC}$ $V_{ m COM}$		Full	0		V_{+}	v	
On-Resistance (Note 10)	R _{on}		Room Full		0.5	0.8 1.0		
R _{ON} Flatness (Note 10)	R _{on} Flatness	V ₊ =2.7V, V _{COM} =0.6/1.5V, I _{NO} , I _{NC} =100mA	Room			0.15	Ω	
On-Resistance Match Between Channels (Note 10)	$\Delta R_{DS(on)}$		Room			0.05		
Switch Off Leakage Current	$I_{\rm NO(off)}, \\ I_{\rm NC(off)}$	V ₊ =3.3V, V _{NO} ,V _{NC} =0.3V/3V,	Room Full	-2 -20		2 20		
	I _{COM(off)}	$V_{\rm NO}, V_{\rm NC} = 3V/0.3V$	Room Full	-2 -20		2 20	nA	
Channel-On Leakage Current	I _{COM(on)}	$V_{+}=3.3V,$ $V_{NO}, V_{NC}=V_{COM}$ =0.3V/3V	Room Full	-2 -20		2 20		
Digital Control	1			1				
Input High Voltage (Note 10)	$V_{\rm INH}$		Full	1.4			V	
Input Low Voltage	V _{INL}		Full			0.5		
Input Capacitance	C _{IN}		Full		10		pF	
Input Current	$I_{INL} \\ or \ I_{INH}$	$V_{IN}=0$ or V_+	Full	-1		1	μΑ	
Dynamic Character	istics							
Turn-On Time	t _{ON}	V_{NO} or $V_{NC}=2.0V$,	Room Full		52	82 90	ng	
Turn-Off Time	t _{OFF}	R_L =50 Ω , C_L =35 pF	Room Full		43	73 78	ns	
Break-Before-Make Time	t _d	V_{NO} or V_{NC} =2.0V, R_L =50 Ω , C_L =35pF	Full	1	6		ns	
Charge Injection (Note 10)	Q _{INJ}	$\begin{array}{c} C_L = 1 n F, \\ V_{GEN} = 1.5 V, \\ R_{GEN} = 0 \Omega \end{array}$	Room		21		pC	
Off-Isolation (Note 10)	O _{IRR}	R _L =50Ω, C _L =5pF, f=100kHz	Room		-69		dB	
Crosstalk (Note 10)	X _{TALK}	I TOOKIIZ	Room		-69			
-3dB Bandwidth	BW	R_L =50 Ω , C_L =5 pF	Room		20		MHz	

NO NC Off Capacitance (Note 10)	$\begin{array}{c} C_{NO(off)} \\ C_{NC(off)} \end{array}$	$V_{IN}=0$ or V_+ ,	Room Room		145 145		nE
Channel On Capacitance (Note 10)	$\begin{array}{c} C_{NO(on)} \\ C_{NC(on)} \end{array}$	f=1MHz	Room Room		406 406		pF
Power Supply							
Power Supply Range	V_+		Full	1.8		5.5	V
Power Supply Current	I_+	$V_{IN}=0$ or V_+	Room Full		0.001	1.0 1.0	μΑ

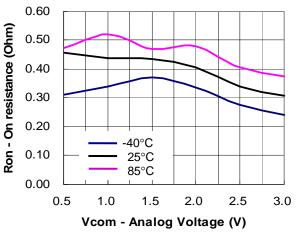
Note 6. V_{IN} =input voltage to perform proper function.

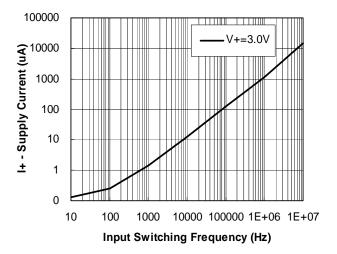
Note 7. Room=25°C, Full=as determined by the operating suffix.

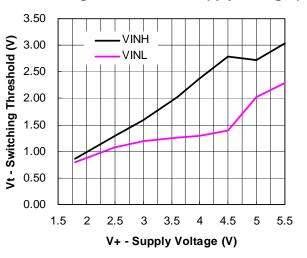
Note 8. Typical values are for design aid only, not guaranteed nor subjected to production testing.


Note 9. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

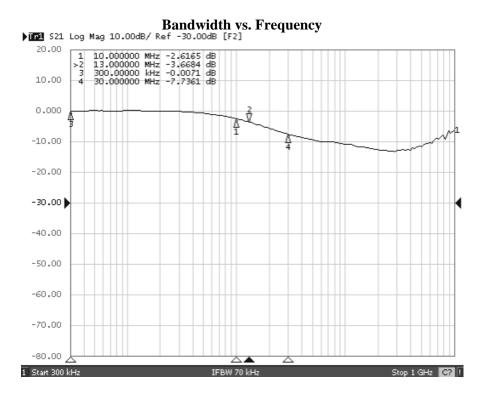
Note 10. Guaranteed by design, nor subjected to production testing.

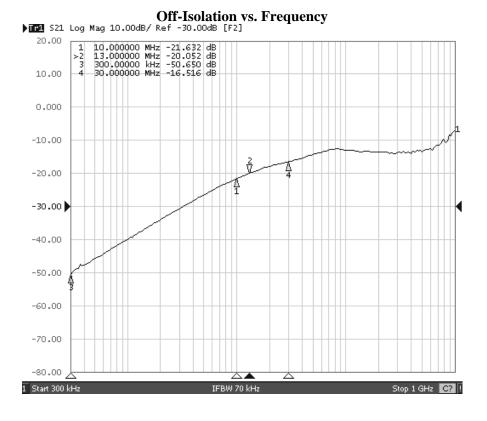


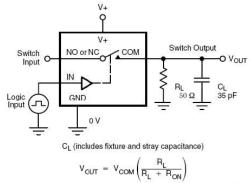

Typical Operating Characteristics

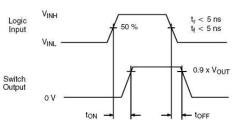

Ron vs.Vcom and Temperature (NC1)

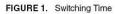
Supply Current vs. Input Switching Frequency




Switching Threshold vs. Supply Voltage (V)

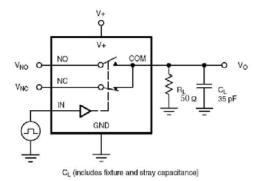
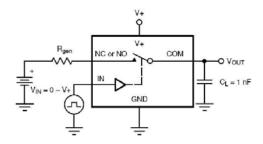
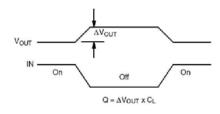

Typical Operating Characteristics (Continued)

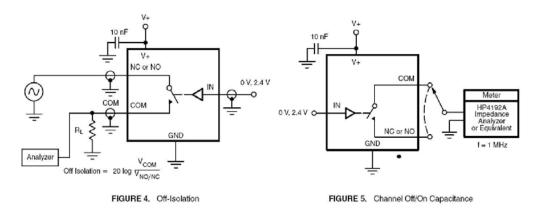




Test Circuits/Timing Diagrams

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.


FIGURE 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

FIGURE 3. Charge Injection

Applications Information

Digital Control Inputs

The UM4684 logic inputs accept up to +5.5V regardless of supply voltage. For example, with a +3.3V supply, IN_ may be driven low to GND and high to 5.5V. Driving IN_ rail-to-rail minimizes power consumption. Logic levels for a +1.8V supply are 0.5V (low) and 1.4V (high).

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) is passed with very little change in on-resistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.

Caution

Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to devices.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to <20mA, add a small signal diode (D1) as shown in Figure 6. Adding a protection diode reduces the analog range to a diode drop (about 0.7V) below V+ (for D1). RON increases slightly at low supply voltages. Maximum supply voltage (V+) must not exceed +6V. Protection diode D1 also protects against some over voltage situations. No damage will result on Figure 6's circuit if the supply voltage is below the absolute maximum rating applied to an analog signal pin.

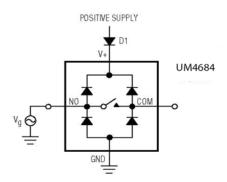
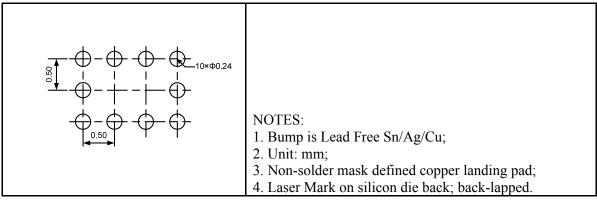


Figure 6


Package Information

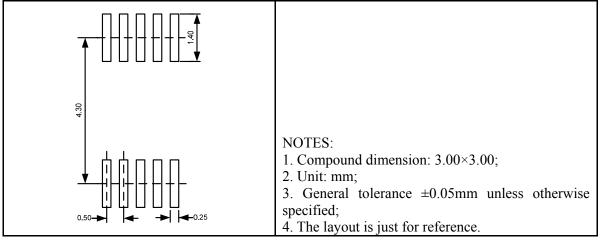
UM4684H CSP10 2.0×1.5

Outline Drawing

	DIMENSIONS								
A1 CORNER D	Samulal	MILLIMETERS			INCHES				
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	Symbol	Min	Тур	Max	Min	Тур	Max		
	А	0.68	0.72	0.76	0.027	0.028	0.030		
	A1	0.21	0.231	0.24	0.0083	0.0091	0.0094		
Top View Bottom View	A2	0.47	0.49	0.52	0.0185	0.0193	0.0205		
	b	0.27	0.31	0.34	0.011	0.012	0.013		
	D	2.00	-	2.10	0.079	-	0.083		
Side View	Е	1.50	-	1.60	0.059	-	0.063		
	e	0.50BSC		0.020BSC					

Land Pattern

Tape and Reel Orientation



Outline Drawing								
	DIMENSIONS							
		MIL	LIME	TERS]	INCHES	5	
	Symbol	Min	Тур	Max	Min	Тур	Max	
	А	-	-	1.10	-	-	0.043	
	A1	0.00	-	0.15	0.000	-	0.006	
	A2	0.75	0.85	0.95	0.030	0.033	0.037	
	A3	0.25	0.35	0.39	0.010	0.014	0.015	
	b	0.18	-	0.28	0.007	-	0.011	
	c	0.09	-	0.23	0.004	-	0.009	
	D	2.90	3.00	3.10	0.114	0.118	0.122	
Top View End View	Е	2.90	3.00	3.10	0.114	0.118	0.122	
	E1	4.70	4.90	5.10	0.185	0.193	0.201	
	e	().50BS	С	0	.020BS0	C	
A ∀ Side View	L	0.40	0.60	0.80	0.016	0.024	0.031	
	θ	0°	-	8°	0°	-	8°	

UM4684EEUE MSOP10

Land Pattern

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc Add: Unit 606, No.570 Shengxia Road, Shanghai 201210 Tel: 021-51093966 Fax: 021-51026018 Website: www.union-ic.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Union manufacturer:

Other Similar products are found below :

FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7