4.5Ω 300MHz Bandwidth Dual SPDT Analog Switch

UM4717 *CSP10 1.90×1.40* UM4717Q *QFN10 1.80×1.40*

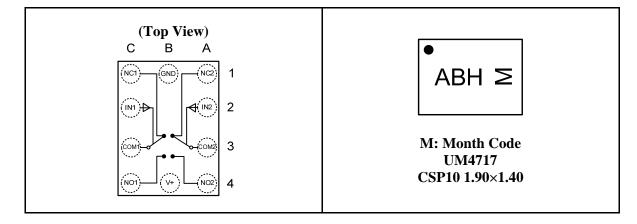
General Description

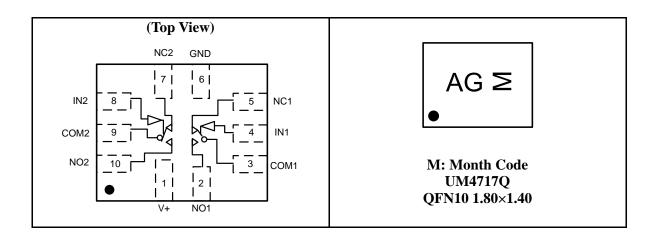
The UM4717/UM4717Q low-voltage, low on-resistance (R_{ON}), dual single-pole/double-throw (SPDT) analog switch operates from a single +1.8V to +5.5V supply. The device is designed for USB 1.1/2.0 and audio switching applications.

The UM4717 features two 4.5Ω R_{ON}(max) SPDT switches with 1.2Ω flatness and 0.3Ω matching between channels, while the UM4717Q features two 6Ω R_{ON}(max) SPDT switches with 1.8Ω flatness and 0.6Ω matching between channels. The switch offers break-before-make switching (1ns) with t_{ON} <80ns and t_{OFF} <40ns at +2.7V. The digital logic inputs are +1.8V logic compatible with a +2.7V to +3.6V supply.

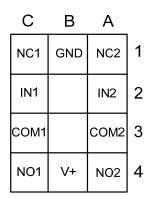
The UM4717 is packaged in a chip-scale package (CSP), occupies only a 1.90mm ×1.40mm area and has a 4×3 bump array with a bump pitch of 0.50mm. The UM4717Q is packaged in a 1.80mm ×1.40mm QFN10 package, both significantly reducing the required PC board area.

Applications


- USB 1.1/2.0 Signal Switching Circuits
- Battery-Operated Equipment
- Audio/Video-Signal Routing
- Headphone Switching
- Low-Voltage Data-Acquisition Systems
- Sample-and-Hold Circuits
- Cell Phones
- PDAs


Features

- 2ns (Max) Differential Skew
- -3dB Bandwidth: 300MHz
- Low 15pF On-Channel Capacitance
- Single-Supply Operation from +1.8V to +5.5V
- Typical $R_{ON}(max)$ with +3V Supply: 4.5Ω (UM4717), 6Ω (UM4717Q)
- Rail-to-Rail Signal Handling
- High Off-Isolation: -50dB (10MHz)
- Low Crosstalk: -70dB (10MHz)
- Low Distortion: 0.03%
- +1.8V CMOS-Logic Compatible
- < 0.5nA Leakage Current at +25°C


Pin Configurations

Top View

Ball Mapping for UM4717

Transparent Top View

Pin Description

P	in	NI	Even de eve
UM4717	UM4717Q	Name	Function
A1	7	NC2	Analog Switch 2-Normally Closed Terminal
A2	8	IN2	Analog Switch 2-Digital Control Input
A3	9	COM2	Analog Switch 2-Common Terminal
A4	10	NO2	Analog Switch 2-Normally Open Terminal
B1	6	GND	Ground Connection
B4	1	V_{+}	Positive Supply Voltage
C1	5	NC1	Analog Switch 1-Normally Closed Terminal
C2	4	IN1	Analog Switch 1-Digital Control Input
C3	3	COM1	Analog Switch 1-Common Terminal
C4	2	NO1	Analog Switch 1-Normally Open Terminal

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM4717	CSP10 1.90×1.40	АВН	3000pcs/7 Inch Tape & Reel
UM4717Q	QFN10 1.80×1.40	AG	3000pcs/7 Inch Tape & Reel

Function Table

IN_	NO_	NC_
0	OFF	ON
1	ON	OFF

Absolute Maximum Ratings

Symbol	Parameter		Limit	Unit	
V_{+}	Supply Voltage	Supply Voltage			
$V_{\rm S}$	DC Switch Voltage (Note 1)		-0.3 to (V ₊ +0.3)	V	
IN_	DC IN Voltage		-0.3 to +6.0		
I_{O}	Continuous Current (COM_, NO_,	±100	A		
I_P	Peak Current (Pulsed at 1ms, 10%	Duty Cycle)	±200	mA	
To	Operating Temperature Range	-40 to +85			
T_{J}	Junction Temperature		+150		
T_{STG}	Storage Temperature Range		-65 to +150	°C	
$T_{\rm L}$	Junction Lead Temperature (Solde	ring, 10 Seconds)	+300		
т	Duma Tama anatuma (Saldanina)	Infrared (15s)	+220		
T_{Bump}	Bump Temperature (Soldering)	+215			
P_{D}	Continuous Power Dissipation @ -	909	mW		
ESD	ESD Method 3015.7		>2000	V	

Note 1: Signals on COM_, NO_, or NC_ exceeding $V_{\scriptscriptstyle +}$ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Electrical Characteristics (Single +3V Supply)

(V₊=+2.7V to +3.6V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V₊=+3.0V, T_A =+25°C) (Notes 2, 3)

Symbol	Parameter	Test Conditions		Тетр	Limits (-40°C to 85°C)			Unit		
Symbol	i ai ametei			Temp	Min	Тур	Max	Omt		
DC Electri	cal Characteristics									
$egin{array}{c} V_{COM_} \ V_{NO_} \ V_{NC} \end{array}$	Analog Signal Range			Full	0		V_{+}	V		
V_{+}	Power Supply Range			Full	1.8		5.5	V		
I_+	Supply Current	V ₊ =+5.5V, V _{IN}	=0V or V ₊	Full			1	μΑ		
I _{COM_(ON)}	COM_On Leakage Current (Note 4)	V_{+} =+3.6V, V_{COM} _ V_{NO} _ or V_{NC} _=0.5 Floating	3V, 3.3V, or	Room Full	-1 -2	+0.01	+1 +2	nA		
I_{OFF}	OFF State Leakage Current (Note 4)	V_{+} =+3.6V, V_{COM} =0.3V, 3.3V; V_{NO} or V_{NC} =3.3V, 0.3V		Room Full	-0.5 -1	+0.01	+0.5 +1	nA		
V_{IH}	Input High Voltage			Full	1.6			V		
$V_{\rm IL}$	Input Low Voltage			Full			0.5	V		
I _{IN}	Input Leakage Current	V ₊ =+3.6V, V _{IN_}	=0 or 5.5V	Full	-100		+100	nA		
		V_{+} =+2.7V, I_{COM} =10mA; V_{NO} or V_{NC} =1.5V	10.44717	Room		3.0	4.5			
_			UM4717	Full			5			
R_{ON}	On-Resistance (Note 4)		$\overline{V_{NO}}$ or	$\overline{V_{NO}}$ or		Room		4.5	6	Ω
			UM4717Q	Full			7			
		N +2.7N	11114717	Room		0.1	0.3			
$\Delta R_{ m ON}$	On Resistance Match Between Channels	$V_{+}=+2.7V$, $I_{COM}=10mA$;	UM4717	Full			0.4	Ω		
ZITON	(Notes 4, 5)	V_{NO} or $V_{NC} = 1.5V$	UM4717Q	Room		0.5	0.6			
			OM4717Q	Full			0.9			
		$V_{+}=+2.7V_{+}$	UM4717	Room		0.6	1.2			
R_{FLAT}	On Resistance Flatness	$I_{COM} = 10 \text{mA};$	O1417/1/	Full			1.5	Ω		
TLAT	(Note 6)	V_{NO} or V_{NC} = 1.0V, 1.5V, 2.0V	UM4717Q	Room		1.5	1.8]		
		. ,	0	Full			2.0			

- Note 2: The parts are 100% tested at +25°C only, and guaranteed by design over the specified temperature range.
- Note 3: The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value is a maximum.
- Note 4: Guaranteed by design.
- Note 5: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Between any two switches.

Electrical Characteristics (Single +3V Supply) (Continued)

(V₊=+2.7V to +3.6V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V₊=+3.0V, T_A =+25°C) (Notes 2, 3)

Symbol	Parameter	Test Conditions	Temp	Limits (-40°C to 85°C)			Unit			
Symbol	1 ai ainetei	Test Conditions		Min	Тур	Max	Omt			
AC Electri	AC Electrical Characteristics									
t_{ON}	Turn-On Time	V_{NO} , V_{NC} =1.5V; R_{L} =300 Ω , C_{L} =35pF, Figure 1; V_{IH} =1.5V, V_{IL} =0V	Room Full		40	80 100	ns			
$t_{ m OFF}$	Turn-Off Time	V_{NO} , V_{NC} =1.5V; R_{L} =300 Ω , C_{L} =35pF, Figure 1; V_{IH} =1.5V, V_{IL} =0V	Room Full		20	40 50	ns			
t _{BBM}	Break Before Make Time (Note 4)	V_{NO} , V_{NC} =1.5V; R_L =300 Ω , C_L =35pF, Figure 2	Room Full	1	8		ns			
t _{SKEW}	Skew (Note 4)	R_S =39 Ω , C_L =50pF, Figure 3	Full		0.15	2	ns			
$Q_{\rm INJ}$	Charge Injection	C_L =1.0nF, Figure 4 V_{GEN} =1.5V, R_{GEN} =0 Ω	Room		5		pC			
$ m V_{ISO}$	Off Isolation	f=10MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5 pF , Figure 5	Room		-50		dB			
		f=1MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5pF, Figure 5			-70					
V_{CT}	Crosstalk (Note 7)	f=10MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5pF, Figure 5	Room		-70		dB			
VC1	Crossuik (110to 7)	f=1MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5pF, Figure 5	Room		-90		ub			
BW	-3dB Bandwidth	Signal=0dBm, R_L =50 Ω , C_L =5pF, Figure 5	Room		300		MHz			
THD	Total Harmonic Distortion	R_L =600 Ω , V_{COM} =2 V_{P-P}	Room		0.03		%			
Capacitan	ce									
C _{NO_(OFF)} C _{NC_(OFF)}	NO_, NC_ Off Capacitance	f=1MHz, Figure 6	Room		9		pF			
C _(ON)	Switch On Capacitance	f=1MHz, Figure 6	Room		15		pF			

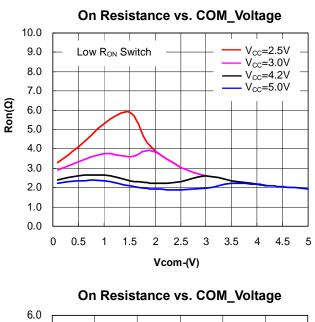
- Note 2: The parts are 100% tested at +25°C only, and guaranteed by design over the specified temperature range.
- Note 3: The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value is a maximum.
- Note 4: Guaranteed by design.
- Note 5: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Between any two switches.

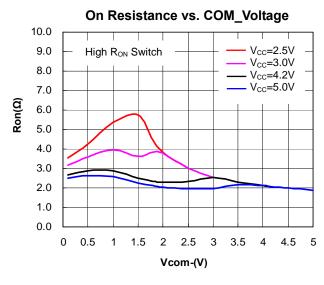
Electrical Characteristics (Single +5V Supply)

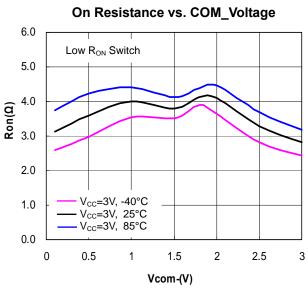
(V₊=+4.2V to +5.5V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V₊=+5.0V, T_A =+25°C) (Notes 2, 3)

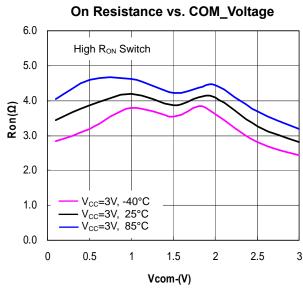
Symbol	Parameter	Test Conditions		Temp	Limits (-40°C to 85°C)			Unit
Symbol	r ar ameter	Test Condition	rest conditions		Min	Тур	Max	Omt
DC Electr	rical Characteristics							
$egin{array}{c} V_{ ext{COM}} \ V_{ ext{NO}} \ V_{ ext{NC}} \end{array}$	Analog Signal Range			Full	0		V_{+}	V
V ₊	Power Supply Range			Full	1.8		5.5	V
I ₊	Supply Current	V ₊ =+5.5V, V _{IN} _=0	V or V ₊	Full			1	μА
I _{COM_(ON)}	COM_On Leakage Current (Note 4)	V_{+} =+5.5V, V_{COM}_{-} =1 V_{NO}_{-} or V_{NC}_{-} =1.0V Floating	.0V, 4.5V; , 4.5V, or	Room Full	-1 -2	+0.01	+1 +2	nA
I_{OFF}	OFF State Leakage Current (Note 4)	$V_{+}=+5.5V, V_{COM}=1$ V_{NO} or $V_{NC}=1.0V$.0V, 4.5V; ', 4.5V	Room Full	-0.5 -1	+0.01	+0.5 +1	nA
$V_{ m IH}$	Input High Voltage			Full	2.3			V
V_{IL}	Input Low Voltage			Full			0.8	V
I_{IN}	Input Leakage Current	V ₊ =+5.5V, V _{IN} _=	0 or V ₊	Full	-100		+100	nA
			ID (4515	Room		1.7	3	
_		V ₊ =+4.2V,	UM4717	Full			3.5	Ω
R_{ON}	On-Resistance (Note 4)	I _{COM} _=10mA; V _{NO} _ or V _{NC} _=3.5V		Room		2.5	3.5	
			UM4717Q	Full			4	
			LIM4717	Room		0.1	0.3	
$\Delta R_{ m ON}$	On Resistance Match Between Channels	$V_{+}=+4.2V,$ $I_{COM}=10mA;$	UM4717	Full			0.4	Ω
ΔION	(Notes 4, 5)	V_{NO} or V_{NC} = 3.5V	UM4717Q	Room		0.5	0.6	32
	UNIT		0.1.7.7.2	Full			0.9	
		V ₊ =+4.2V,	UM4717 UM4717Q	Room		0.4	1.2	
R_{FLAT}	On Resistance Flatness	$I_{COM} = 10 \text{mA};$		Full			1.5	Ω
	(Note 6)	V_{NO} or V_{NC} =1.0V, 2.0V, 3.5V		Room		0.9	1.2]
			Ì	Full			1.5	

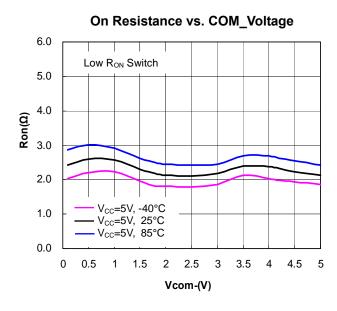
- Note 2: The parts are 100% tested at +25°C only, and guaranteed by design over the specified temperature range.
- Note 3: The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value is a maximum.
- Note 4: Guaranteed by design.
- Note 5: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Between any two switches.

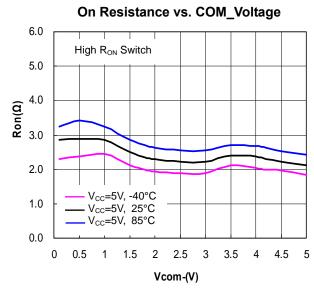

Electrical Characteristics (Single +5V Supply) (Continued)

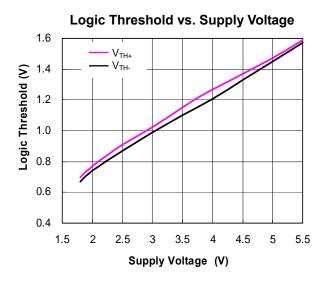

(V₊=+4.2V to +5.5V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at V₊=+5.0V, T_A =+25°C) (Notes 2, 3)

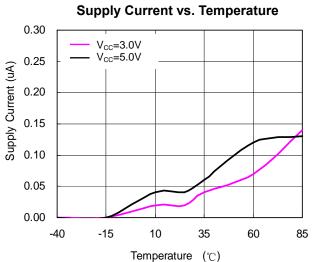

Symbol	Parameter	Test Conditions	Temp	Limits (-40°C to 85 °C)			Unit
Symbol	Turumeter	Test conditions	Temp	Min	Тур	Max	Cint
AC Electric	cal Characteristics						
t_{ON}	Turn-On Time	$V_{NO_{-}}, V_{NC_{-}} = 3.0V;$ $R_{L} = 300\Omega, C_{L} = 35pF, Figure 1;$	Room Full		30	80 100	ns
t_{OFF}	Turn-Off Time	$V_{NO}, V_{NC} = 3.0V;$ $R_L = 300\Omega, C_L = 35pF, Figure 1;$	Room Full		20	40 50	ns
$t_{ m BBM}$	Break Before Make Time (Note 4)	V_{NO} , V_{NC} =3.0V; R_L =300 Ω , C_L =35pF, Figure 2	Room Full	1	8		ns
t_{SKEW}	Skew (Note 4)	R_S =39 Ω , C_L =50pF, Figure 3	Full		0.15	2	ns
Q_{INJ}	Charge Injection	C_L =1.0nF, Figure 4 V_{GEN} =1.5V, R_{GEN} =0 Ω	Room		9		pC
$V_{\rm ISO}$	Off Isolation	f=10MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5 pF , Figure 5	Room		-50		dB
* ISO	OH ISOIMION	f=1MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5pF, Figure 5	Room		-70		аВ
V	Crosstalk (Note 7)	f=10MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5pF, Figure 5	Room		-70		dB
V_{CT}	Clossiaik (Note 7)	f=1MHz; V_{NO} , V_{NC} =1 V_{P-P} ; R_L =50 Ω , C_L =5pF, Figure 5	Koom		-90		uБ
BW	-3dB Bandwidth	Signal=0dBm, R_L =50 Ω , C_L =5pF, Figure 5	Room		300		MHz
THD	Total Harmonic Distortion	$R_{L}=600\Omega,$ $V_{COM}=2V_{P-P}$	Room		0.03		%
Capacitano	ee						
$C_{NO_(OFF)}$ $C_{NC_(OFF)}$	NO_, NC_ Off Capacitance	f=1MHz, Figure 6	Room		9		pF
$C_{(ON)}$	Switch On Capacitance	f=1MHz, Figure 6	Room		15		pF

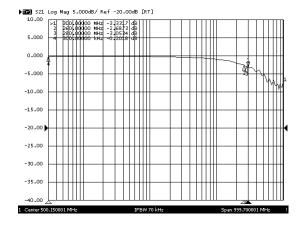

- Note 2: The parts are 100% tested at +25°C only, and guaranteed by design over the specified temperature range.
- Note 3: The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value is a maximum.
- Note 4: Guaranteed by design.
- Note 5: $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Between any two switches.


Typical Operating Characteristics

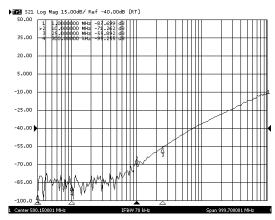


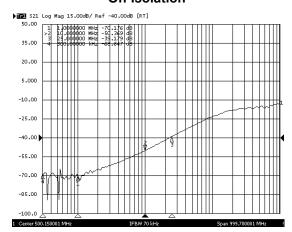






Typical Operating Characteristics (Continued)




Bandwidth

Crosstalk

Off Isolation

Detailed Description

The UM4717/UM4717Q high-speed, low-voltage, low on-resistance (R_{ON}), dual SPDT analog switch operates from a single +1.8V to +5.5V supply. The switch features break-before-make switching operation and fast switching speeds (t_{ON} =80ns (max), t_{OFF} =40ns (max)).

The switch has low 15pF on-channel capacitance, which allows for 12Mbps switching of the data signals for USB 1.0/1.1 applications. The UM4717/UM4717Q is designed to switch D_+ and D_- USB signals with a guaranteed skew of less than 2ns (see Figure 4) as measured from 50% of the input signal to 50% of the output signal.

Applications Information

Digital Control Inputs

The UM4717/UM4717Q logic inputs accept up to +5.5V regardless of supply voltage. For example, with a +3.3V supply, IN_ can be driven low to GND and high to +5.5V allowing for mixing of logic levels in a system. Driving the control logic inputs rail-to-rail minimizes power consumption. For a +3V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 2.0V (high).

Analog Signal Levels

The on-resistance of the UM4717/UM4717Q changes very little for analog input signals across the entire supply voltage range (see the Typical Operating Characteristics). The switches are bidirectional, so the NO , NC , and COM pins can be either inputs or outputs.

Power-Supply Sequencing and Over-Voltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_+ before applying analog signals, especially if the analog signal is not current-limited.

Test Circuits

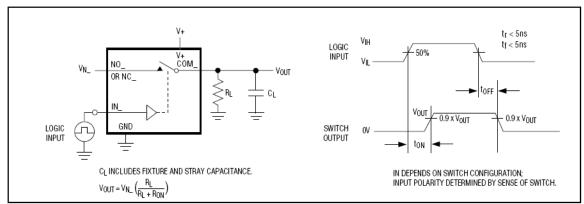


Figure 1. Switching Time

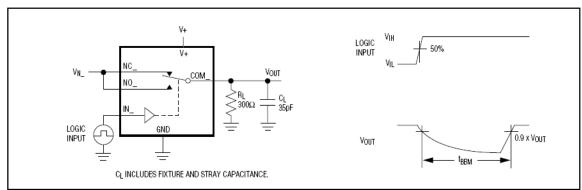


Figure 2. Break-Before-Make Interval

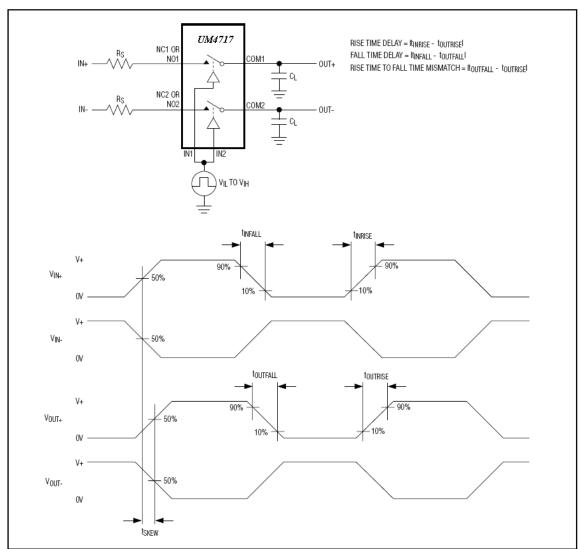


Figure 3. Output Signal Skew

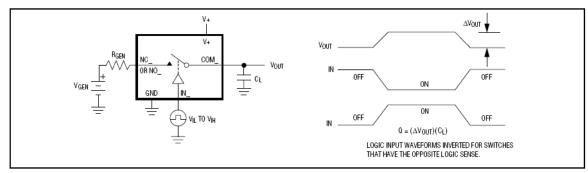


Figure 4. Charge Injection

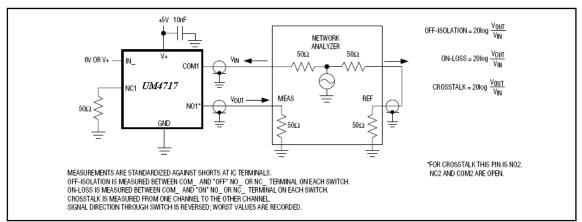


Figure 5. On-Loss, Off-Isolation, and Crosstalk

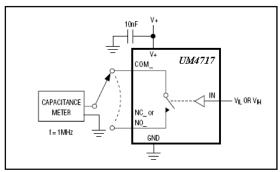
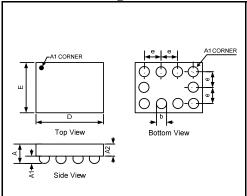
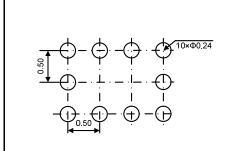



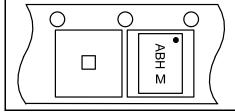
Figure 6. Channel Off/On-Capacitance

Package Information

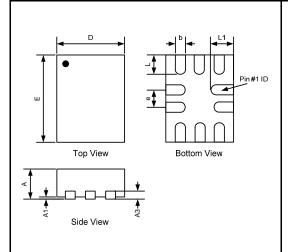

UM4717: CSP10 1.90×1.40

Outline Drawing

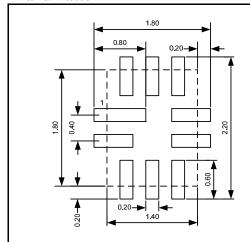
DIMENSIONS								
Symbol	MILLIMETERS			INCHES				
	Min	Тур	Max	Min	Тур	Max		
A	-	1	0.68	-	-	0.027		
A1	0.21	0.231	0.24	0.0083	0.0091	0.0094		
A2	0.40	0.41	0.42	0.015	0.016	0.017		
b	0.27	0.30	0.32	0.011	0.012	0.013		
D	1.82	-	1.90	0.072	-	0.075		
Е	1.32	-	1.40	0.052	-	0.055		
e		0.50TYI)	0.020TYP				


Land Pattern

NOTES:

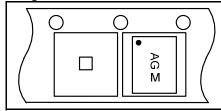

- 1. Bump is Lead Free Sn/Ag/Cu.
- 2. Unit: mm.
- 3. Non-solder mask defined copper landing pad.4. Laser Mark on silicon die back; back-lapped.

Tape and Reel Orientation


UM4717Q: QFN10 1.80×1.40

Outline Drawing

DIMENSIONS								
Crombal	MIL	LIME	ΓERS	INCHES				
Symbol	Min	Тур	Max	Min	Тур	Max		
A	0.50	0.55	0.60	0.020	0.022	0.024		
A1	0.00	-	0.05	0.000	-	0.002		
A3	().15RE	F	0.006REF				
b	0.15	0.20	0.25	0.006	0.008	0.010		
D	1.35	1.40	1.45	0.053	0.055	0.057		
Е	1.75	1.80	1.85	0.069	0.071	0.073		
e	0.40BSC			0	.016BS0	\Box		
L	0.30	0.40	0.50	0.012	0.016	0.020		
L1	0.40	0.50	0.60	0.016	0.020	0.024		


Land Pattern

NOTES:

- 1. Compound dimension: 1.80×1.40;
- 2. Unit: mm
- 3. General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc

Add: Unit 606, No.570 Shengxia Road, Shanghai 201210

Tel: 021-51093966 Fax: 021-51026018

Website: www.union-ic.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Union manufacturer:

Other Similar products are found below:

FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T

TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12

ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X

BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+

MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR

NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G

NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7