DATA SHEET

Product Name Flex Led Strip Use Thick Film Chip Resistors
 Part Name LE05/LE06 Series

Uniroyal Electronics Global Co., Ltd.

88\#, Longteng Road, Economic \& Technical Development Zone, Kunshan, Jiangsu, China

Tel	$+8651257631411 / 22 / 33$
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1．Scope：
1．1 This datasheet is the characteristics of Flex Led Strip Use Thick Film Chip Resistor manufactured by UNI－ROYAL．
1．2 Suit for reflow．
1．3 Stable electrical capability，high reliability．
1．4 Low assembly cost，suit for automatic SMT equipment
1．5 Superior mechanical strength and high frequency characteristics
1．6 According with ROHS standard and Halogen－free

2．Part No．System

Part No．includes 14 codes shown as below：
$2.11^{\text {st }} \sim 4^{\text {th }}$ codes：Part name．E．g．：LE05，LE06
$2.25^{\text {th }} \sim 6^{\text {th }}$ codes：Power rating．

Wattage	1／32	3／4	1／2	1／3	$1 / 4$	1／8	1／10	1／16	1／20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is equal or lower than 1 watt， $5^{\text {th }}$ code would be＂W＂and $6^{\text {th }}$ code would be a number or letter．
E．g．： $\mathrm{WA}=1 / 10 \mathrm{~W} \quad \mathrm{~W} 4=1 / 4 \mathrm{~W}$
$2.37^{\text {th }}$ code：Tolerance．E．g．：$D= \pm 0.5 \% \quad \mathrm{~F}= \pm 1 \% \quad \mathrm{G}= \pm 2 \% \quad \mathrm{~J}= \pm 5 \% \quad \mathrm{~K}= \pm 10 \%$
$2.48^{\text {th }} \sim 11^{\text {th }}$ codes：Resistance Value．
2．4．1 If value belongs to standard value of E－24 series，the $8^{\text {th }}$ code is zero， $9^{\text {th }} \sim 10^{\text {th }}$ codes are the significant figures of resistance value，and the $11^{\text {th }}$ code is the power of ten．
2．4．2 If value belongs to standard value of E－96 series，the $8^{\text {th }} \sim 10^{\text {th }}$ codes are the significant figures of resistance value，and the $11^{\text {th }}$ code is the power of ten．
2．4．311 ${ }^{\text {th }}$ codes listed as following：

$$
0=10^{0} \quad 1=10^{1} \quad 2=10^{2} \quad 3=10^{3} \quad 4=10^{4} \quad 5=10^{5} \quad 6=10^{6} \quad \mathrm{~J}=10^{-1} \quad \mathrm{~K}=10^{-2} \quad \mathrm{~L}=10^{-3} \quad \mathrm{M}=10^{-4}
$$

$2.512^{\text {th }} \sim 14^{\text {th }}$ codes．
2．5．1 $12^{\text {th }}$ code：Packaging Type．E．g．：C＝Bulk T＝Tape／Reel
2．5．2 $13^{\text {th }}$ code：Standard Packing Quantity．

$$
\begin{array}{lcccc}
4=4,000 \mathrm{pcs} & 5=5,000 \mathrm{pcs} & \mathrm{C}=10,000 \mathrm{pcs} & \mathrm{D}=20,000 \mathrm{pcs} & \mathrm{E}=15,000 \mathrm{pcs} \\
\text { Chip Product: } & \mathrm{BD}=\mathrm{B} / \mathrm{B}-20000 \mathrm{pcs} & \mathrm{TC}=\mathrm{T} / \mathrm{R}-10000 \mathrm{pcs} &
\end{array}
$$

2．5．3 $14^{\text {th }}$ code：Special features．
E＝Environmental Protection，Lead Free，or Standard type．

3．Ordering Procedure

（Example：LE06 1／4W $\pm 5 \% 100 \Omega$ T／R－5000）

4．Marking

$4.1 \pm 5 \%$ tolerance products（E－24 series）：
3 codes．
$1^{\text {st }} \sim 2^{\text {nd }}$ codes are the significant figures of resistance value， and the rest code is the power of ten
$4.2 \pm 1 \%$ tolerance products（E－96 series）：
4 codes．
$1^{\text {st }} \sim 3^{\text {rd }}$ codes are the significant figures of resistance value， and the rest code is the power of ten．
Letter＂R＂in mark means decimal point．

$201 \rightarrow 200 \Omega$

$1000 \rightarrow 100 \Omega$

5．Dimension

Type	Dimension（mm）					
	L	W	H	A1	B1	
LE05（0805）	2.00 ± 0.15	$1.25+0.15 /-0.10$	0.55 ± 0.10	≤ 1.0	0.40 ± 0.20	
LE06（1206）	3.10 ± 0.15	$1.55+0.15 /-0.10$	0.55 ± 0.10	≤ 1.0	0.50 ± 0.20	

6．Resistance Range

Type	$70{ }^{\circ} \mathrm{C}$ Power	Max Working Voltage	Max Overload Voltage	Tolerance	Resistance Range
LE05	$1 / 8 \mathrm{~W}$	200 V	400 V	$\pm 1 \%, \pm 5 \%$	$10 \Omega \sim 820 \Omega$
LE06	$1 / 4 \mathrm{~W}$	200 V	400 V	$\pm 1 \%, \pm 5 \%$	$10 \Omega \sim 820 \Omega$

7．Structure

8．Recommend the size of welding plate

Type	Dimension（mm）			
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
LE05	1.0 ± 0.1	1.0 ± 0.1	1.3 ± 0.1	3.0 ± 0.1
LE06	2.0 ± 0.1	1.1 ± 0.1	1.6 ± 0.1	4.2 ± 0.1

9．Derating Curve

Power rating will change based on continuous load at ambient temperature from -55 to $155^{\circ} \mathrm{C}$ ． It is constant between -55 to $70^{\circ} \mathrm{C}$ ，and derate to zero when temperature rise from 70 to $155^{\circ} \mathrm{C}$ ．
Voltage rating：
Resistors shall have a rated direct－current（DC）continuous working voltage or an approximate sine－wave root－mean－square（RMS）alternating－current（AC）continuous working voltage at commercial－line

frequency and waveform corresponding to the power rating，as determined from the following formula：
Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

$\mathrm{RCWV}=\sqrt{P \times \mathrm{R}}$

Remark：RCWV：Rating Continuous Working Voltage（Volt．）P：power rating（Watt）R：nominal resistance（ Ω ） In no case，the rated DC or RMS AC continuous working voltage must be greater than the applicable maximum value． The overload voltage is 2.5 times RCWV or Max．Overload voltage whichever is lower．

10．Performance Specification

| Characteristic |
| :---: | :--- | :--- |

UNI•ROYAL

Humidity （ steady state ）	$\pm 1 \%$	$\pm(0.5 \%+0.1 \Omega)$.	4．24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40 \pm 2^{\circ} \mathrm{C}$ and $90-95 \%$ relative humidity，
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
Load life in humidity	$\pm 1 \%$	$\pm(1.0 \%+0.05 \Omega)$.	7．9 Resistance change after 1，000 hours（1．5 hours＂ON＂，0．5 hour＂OFF＂）at RCWV in a humidity chamber controlled at 40 ${ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity．
	$\pm 5 \%$	$\pm(3.0 \%+0.05 \Omega)$	
Load life	$\pm 1 \%$	$\pm(1.0 \%+0.1 \Omega)$	4．25．1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle 1.5 hours＂ON＂， 0.5 hour＂OFF＂at 70 ${ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ambient．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
Low Temperature Storage	$\pm 1 \%$	$\pm(1.0 \%+0.1 \Omega)$	4．23．4 Lower limit temperature，for 2 H ．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
High Temperature Exposure	$\pm \%$	$\pm(1.0 \%+0.1 \Omega)$	4．23．2 Upper limit temperature ，for 16H．
	$\pm 5 \%$	$\pm(3.0 \%+0.1 \Omega)$	
Leaching	No visible damage		J－STD－002 Test D Samples completely immersed for 30 sec in solder bath at $260^{\circ} \mathrm{C}$

11．Packing of Surface Mount Resistors

11．1 Dimension of Paper Taping ：（Unit：mm）

Type	A ± 0.2	B ± 0.2	C ± 0.05	$\Phi \mathrm{D}_{-0}^{+0.1}$	E ± 0.1	F ± 0.05	G ± 0.1	W ± 0.2	T ± 0.1
	1.65	2.40	2.00	1.50	1.75	3.50	4.00	8.00	0.81
LE06	2.00	3.60	2.00	1.50	1.75	3.50	4.00	8.00	0.81

11．2 Dimension of Reel ：（Unit：mm）

Type	Taping	Qty／Reel	$\mathrm{A} \pm 0.5$	$\mathrm{~B} \pm 0.5$	$\mathrm{C} \pm 0.5$	$\mathrm{D} \pm 1$	$\mathrm{M} \pm 2$	$\mathrm{~W} \pm 1$
LE05	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
LE06	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0

12．Note
12．1．UNI－ROYAL recommend products store in warehouse with temperature between 15 to $35^{\circ} \mathrm{C}$ under humidity between 25 to 75% RH． Even under storage conditions recommended above，solder ability of products will be degraded stored over 1 year old．
12．2．Cartons must be placed in correct direction which indicated on carton，otherwise the reel or wire will be deformed．
12．3．Storage conditions as below are inappropriate：
a．Stored in high electrostatic environment
b．Stored in direct sunshine，rain，snow or condensation．
c．Exposed to sea wind or corrosive gases，such as $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$ ，etc．
13．Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	$1 \sim 6$	Mar．20，2018	Haiyan Chen	Nana Chen
2	Modify characteristic	$4 \sim 5$	Feb．12，2019	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co．，Ltd．All rights reserved．Specification herein will be changed at any time without prior notice．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Thick Film Resistors category:
Click to view products by Uniroyal manufacturer:
Other Similar products are found below :
MCR03EZPFX3162 MCR004YZPJ332 201007J022KT4E 201007F1653T4E 201007F6652T4E 0603WAF137KT5E RTT204702FTE RTT203000FTE RTT2056R0FTE CR2010F470KE04Z RTT018451FTH RTT021802DTH 0402WGF510LTCE 0201WMJ0200TEE TR0603B26K7P0550Z 0201WMF5102TEE 1210W2J047KT5E YLR12-2-4F-W HOT(0.25x1.3)-3.2-0R-I HOT(0.4x1.5)-5.2-0R-I HoT(0.45x1.5)-8.2-0R-I 0201WMF1103TEE 0201WMF7152TEE 1210W2J0124T5E 201007J010LT4E 201007J0360T4E 201007J0430T4E 0805W8F931KT5E 1206W4F5231T5E 1210W2J0620T5E 201007J0822T4E 0201WMF1005TCE 0201WMF1212TCE 0201WMF1373TCE 0201WMF1400TCE 0201WMF2000TEE 0201WMF2001TCE 0201WMF226JTCE 0201WMF2672TCE 0201WMF2803TCE 0201WMF357JTCE 0201WMF3743TCE 0201WMF430JTCE 0201WMF4990TCE 0201WMF5104TCE 0201WMF510JTEE 0201WMF5110TCE 0201WMF6652TEE 0201WMF6812TCE 0201WMF8200TCE

