

Specification for Approval

Customer深圳市嘉立創科技發展有限公司Product NameLEAD-FREE METAL OXIDE FILM FIXED RESISTORSPart NameMORSERIES±5%

88 Longteng Road, Economic & Technical Development Zone, Kunshan City, Jiangsu, China

TEL: 86 512 57631411 / 22 / 33

FAX: 86 512 57631431

Email: globalsales@uniohm.com localsales@uniohm.com

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	1 / 12

Contents

I n d	e x
1.0	Scope4
2.0	Ratings & dimension4
3.0	Structure
4.0	Mark5
5.0	Derating curve
6.0	Voltage rating
7.0	Performance specification
8.0	Explanation of Part No. system
9.0	Ordering procedure10
10.0	Standard packing10
11.0	Precaution for storage/Transportation12

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	2 / 12

Unir	聲電子 oyal Electro	nics Indust	ry Co., L		Ohm N Need it!
File Nam	e: MO SERIES ±5%	Date	2015.11.07	Edition No.	1
	Amen	dment Record	Γ	Signa	ture
Edition	Prescription of amen	lment Amend Pag	e Amend Date	Amended by	Checked by
			E'L NO		

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	3 / 12

1.0 Scope:

This specification for approve Lead-Free Metal Oxide Film Fixed Resistors manufactured by UNIOHM.

2.0 Ratings & dimension:

2.1 Normal size

		Dimensio	n(mm)		Max	Max	Dielectric		Decistory
Туре	D	L	d±0.05	H±3	working voltage	overload voltage	withstanding voltage	Tolerance	Resistance range
M01/4W	2.2±0.5	6.5 ± 1.0	0.54	28	250V	400V	250V	±5%	0.1Ω~470ΚΩ
M01/2W	3.0±0.6	9.5±1.0	0.54	28	250V	400V	250V	±5%	0.1Ω~560ΚΩ
M01W	4.0±0.6	11.5±1.0	0.65	28	350V	600V	350V	±5%	0.1Ω~560ΚΩ
MO2W	5.0 ± 0.6	15.5±1.0	0.70	28	350V	600V	350V	±5%	0.1Ω~560ΚΩ
MO3W	6.0±0.6	17.5±1.0	0.75	28	500V	800V	500V	±5%	0.1Ω~560ΚΩ
MO5W	8.0±0.6	24.5±1.0	0.75	38	750V	1000V	750V	±5%	0.1Ω~680ΚΩ
M07W	8.0±0.6	29.5±1.0	0.75	38	750V	1000V	750V	±5%	20Ω~150KΩ
M08W	8.0±0.6	39.5±1.0	0.75	38	750V	1000V	750V	±5%	30Ω~200KΩ
MO9W	8.0±0.6	52.5±1.0	0.75	38	750V	1000V	750V	±5%	50Ω~200KΩ

2.2 Small Size & Extra Small Size

Туре		Dimension(mm)			Max Working	Max overload	Dielectric withstanding	Tolerance	Resistance
Type	D	L	d±0.05	H±3	Voltage	Voltage	voltage	101010100	Range
M01/2WS	2.2 ± 0.5	6.5 ± 1.0	0.54	28	250V	400V	250V	±5%	0.1Ω~470ΚΩ
MO1WS	3.5 ± 0.6	9.5±1.0	0.60	28	350V	600V	350V	±5%	0.1Ω~560ΚΩ
MO2WS	4.5±0.6	11.5±1.0	0.65	28	350V	600V	350V	±5%	0.1Ω~560ΚΩ
M03WS	$5.0 {\pm} 0.6$	15.5±1.0	0.70	28	350V	600V	350V	±5%	0.1Ω~560ΚΩ
MO5WSS	6.0 ± 0.6	17.5±1.0	0.75	28	500V	800V	500V	±5%	0.1Ω~560ΚΩ
MO5WS	8.0±0.6	24.5 ± 1.0	0.75	38	500V	800V	500V	±5%	0.1Ω~680ΚΩ

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	4 / 12

3.0 Structure:

No.	Name	Component
1	Basic body	Ceramic
2	Resistor layer	Metal Oxide Film
3	End cap	Steel (Tinned iron cap)
4	Lead wire	Tinned copper wire
5	Joint	By welding
6	Coating	Silicon resin with different color $ ext{ } $
7	Color code	Epoxy resin

4.0 Mark

Resistors shall be marked with color coding Colors shall be in accordance with JIS C 0802

4.1 Label:

Label shall have some items as below:

1 Type and style

2 Nominal resistances

- 3 Resistance tolerances
- 4 Quantities
- 5 Lot number
- 6 PPM

Example:

METAL OXIDE FILM FIXED RESISTORS				
WATT: 2WS	VAL:100KΩ			
Q'TY: 1,000	TOL: 5%			
LOT: 3021548	PPM:			

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	5 / 12

5.0 Derating Curve:

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55°C to 70°C. For temperature in excess of 70°C, the power would be derate as shown in figure 1

Ambient temperature(°C)

6.0 Voltage rating:

Resistors should have a direct-current (DC) continuous voltage rating and an alternating-current (AC) continuous voltage rating relates to Power Rating, formula shown as below:

$$RCWV = \sqrt{P * R}$$

RCWV: Rated DC or RMS ac continuous working voltage at commercial-line frequency and waveform (Volt.)

P: Power Rating (Watt.)

R: Nominal Resistance (Ohm)

Resistors would be burned out if it overloaded, such as higher than the maximum value of series' RCWV. And we named 2.5 times RCWV is OVERLOAD Voltage.

7.0 Performance specification:

Item		Limits			Test Method (JIS-C-5201&5202)	
Temperature Coefficient	1/4W 1/2WS ≤100KΩ: ±350PPM 100KΩ <r≤470kω: 1/2W、1WS: ≤120KΩ: ±350PPM 120KΩ<r≦560kω 1W、 2W、 2WS ≤150KΩ: ±350PPM 150KΩ<r≦560kω 5W 5WS ≤180KΩ: ±350PPM 180KΩ<r≦680kω 7W、8W、9W: ±350PPM/°C</r≦680kω </r≦560kω </r≦560kω </r≤470kω: 	0 ~ -700PPM/°C 1/°C 0~ -700PPM/°C • 3W • 3WS • 5WSS 1/°C 0~ -700PPM/°C		centigrade R1: resistat R2: resistat	$\frac{R_2 - R_1}{R_1(T_2 - T_1)}$ nce value at roo nce value at roo	changes per te •* 10 ⁶ (PPM/°C) m temp. (T1) m temp. +100°C (T1), room temp. +	Tt2)
Short-time overload						change after the a RCWV for 5 second	
Approved	Checked	Prepared	e NO.	Edition	Date	Page	
William Zhao	Apple Liu	Chen xiaocui	hen xiaocui JLC		1	2015.11.07	6 / 12

	電子工業有限 I Electronics Industry			i Ohm I Need it!	
ISO14001 ISO/TS					
Item	Limits		Test Method (JIS-C-52	01&5202)	
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	90°metallio	rs shall be clamped in tl c V-block and shall be te y specified in the above	sted at AC potential	
Pulse overload	Resistance change rate is: $\pm (2\%+0.05\Omega)_{Max}$ for normal size. $\pm (5\%+0.05\Omega)_{Max}$ for small size. With no evidence of mechanical damage.		ance change after 10,00 econds "OFF ") at 4 time		
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5Kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 			
Resistance to soldering heat	Resistance change rate is: $\pm (1\%+0.05\Omega)$ Max. With no evidence of mechanical damage	 4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°C solder for 10±1 seconds. 4.17 The area covered with a new, smooth, clean, shiny 			
Solderability	95% coverage Min.	and continuous surface free from concentrated pinholes. Test temp. Of solder:245°C±3°C Dwell time in solder: 2~3seconds.			
Resistance to solvent	No deterioration of protective coatings & markings	4.29 Specir trichloroet	nens shall be immersed hylene completely for 3	min. With ultrasonic	
		duty cycle s	ance change after conti specified:	nuous five cycles for	
		Step	Temperature	Time	
Temperature	Resistance change rate is: \pm (2%+0.05 Ω) Max With no evidence of mechanical	1	-55°C ± 3°C	30 mins	
cycling	\pm (2%+0.050) Max with no evidence of mechanical damage.	2	Room temp.	10 – 15 mins	
		3	+155°C ± 2°C	30 mins	
		4	Room temp.	10 – 15 mins	
	-	-	ontinuous 5 cycles		
Humidity	Resistance change rate is:	-	orary resistance changes		
(steady state)	\pm (2%+0.05 Ω) Max. With no evidence of mechanical damage	-	n a humidity test chamb to 95% relative humidi		
Load life in humidity	$\Delta R/R:$ ≤ ±5% for <100KΩ; ≤ ±10% for ≥100KΩ;	7.9 resista "ON",0.5 h	nce change after 1,0	00 hours (1.5 hours in a humidity test	
Load life	$\begin{array}{l} \Delta R/R:\\ \leq\pm 5\% \text{ for } <100 \text{K}\Omega;\\ \leq\pm 10\% \text{ for } \geq100 \text{K}\Omega; \end{array}$	hours ope	manent resistance ch rating at RCWV with I", 0.5 hour "OFF" at ambient.	duty cycle of 1.5	

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	7 / 12

	Electronics Industry	限公司 Co., Ltd. UniOhm N Meed it!
Item	Limits	Test Method (JIS-C-5201&5202)
Flame retardant	Resistor insulation is self-extinguishing within 10 seconds after externally applied flame is removed.	4.26 The burner is placed remote fro, resistor ignited and adjusted to produce a blue flame 38mm in height and a top of flame 127mm above the top of burner tube. Resistor is supported from its lead at 45° from the horizontal so that the lower end of resistor is the top of blue flame. The test flame is placed to remain for 15 seconds and removed for 15 seconds. The operation is to be repeated until resistor has been subjected to 5 application of test flame.

8.0 Explanation of Part No. system:

The standard Part No. contains 14 codes.

- 8.1 1st~3rd codes: Product type
- 8.2 4th code: Special feature.

Example: MOR0=Metal Oxide Film Fixed Resistors

- 8.3 5th~6th codes: Power rating
- 8.3.1 The 5th code would be "W", "S", or "U" if the resistors' power rating is lower than 1W.
- 8.3.2 The 6th code would be "W", "S", or "U" if the resistors' power rating is greater than 1W.

8.3.3 We named "W" to indicate "normal size", "S" for "small size", and "U" for "ultra-small size". 1/16W~1/2W (<1W)

Wattage	1/2	1/3	1/4	1/5	1/6	1/8	1/10	1/16
Normal size	W2	W3	W4	W5	W6	W8	WA	WG
Small size	S2	S3	S4	S5	S6	S8	SA	SG
Ultra-small size	U2	U3	U4	U5	U6	U8	UA	UG

1W~16W (≧1W)

Wattage	1	2	3	5	7	8	9	10	15
Normal size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small size	1S	2S	3S	5S	7S	8S	9S	AS	FS
Ultra-small size	1U	2U	3U	5U	7U	8U	9U	AU	FU

8.4 7th code: Resistance Tolerance.

 $F=\pm 1\%$ $G=\pm 2\%$ $J=\pm 5\%$ $K=\pm 10\%$

8.5 8th~11th codes: Resistance Value.

8.5.1 For the standard resistance values of E-24 series in 5% and 10% tolerance, 8th code would be "0", 9th~10th codes would be the significant figures of the resistance, and 11th code is the power of ten.

For the standard resistance values of E-96 series in $\leq 2\%$ tolerance, $8^{\text{th}} \sim 10^{\text{th}}$ codes would be the significant figures of the resistance, and 11^{th} code is the power of ten.

8.5.2 As mentioned above, 11th code would be the power of ten, so we use those code in 11th digit shown as following:

	$0=10^{0}$ 1	=10 ¹ 2=10	² 3=10 ³	$4 = 10^{4}$	5=105	
	6=10 ⁶ J	=10 ⁻¹ K=10	⁻² L=10 ⁻³	M=10-4	ł	
Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	8 / 12

厚 聲 Uniroval		工業 ⁷ nics Indus	有限公 try Co.,	~ ~ (Uni Ol	
					્રા ૫	reed it!
8.6 12 ^t	$h \sim 14^{th}$ codes					
8.6.1	12 th code: Pack	aging Type				
	A=Tape/Box (A	Ammo pack) E	B=Bulk/Box			
	T=Tape/Reel	F	=Tape/Box of PT-2	6 products		
8.6.2	13 th code: Stan	dard Packing Quant	ity of Tape/Box & T	ape/Reel pa	ckaging types.	
	If the packing t	ype is Bulk packing	, this digit should be	e "0".		
	A=500pcs	B=2500pcs	1=1000pcs	2=200	0pcs	
8.6.3	For the FORME	D type products, 13	$^{th^{\sim}}14^{th}\operatorname{code} s$ would	l be forming	types shown as	s below:
	MF=M-type wi	th flattened lead wi	re MK= M-ty	pe with kink	ed lead wire	
	ML= M-type w	ith normal lead wir	е			
	MC= M type w	ith kinked lead and	narrow pitch wire			
	F0= F-type	F1=F1-type	F2= F2-type	F3= F3	8-type	
8.6.4	14 th code: Spec	ial features for addi	tional information.			
	P=Panasert ty	pe 1=Avisert	type 1 2=Av	visert type 2		
	3=Avisert type	3				
	A=Cutting type	e CO 1/4W-A type				
	B= Cutting typ	e CO 1/4W-B type				
9.0 Ordering Pr	rocedure (Exam	ple: MOR 5W \pm	5% 30KΩ T/B-	1000)		
<u>M O R</u>	5	<u></u>	0 3 0 3	_ <u>A</u>		
Product Type:	Power rat	ng Resis	stance Value:	[Packing quantity:	7
MOR=Metal Oxide Fi Fixed Resistors	ilm Normal si W4=1/4V	ze: ±2%	series:		10=1,000pcs 20=2,000pcs	
Fixed Resistors	W2=1/2W 1W=1W	V 11 1 st ~	3 rd codes: The significar es of the resistance	nt	30=3,000pcs 40=4,000pcs	
	2W=2W		ode: The power of ten.		50=5,000pcs	
Creatial Fastures	3W=3W 5W=5W		1ple: 20KΩ:2002 5 series:		A0=500pcs B0=2,500pcs	
Special Features: 0= Standard product	7W=7W 8W=8W		ode: 0		Forming type: MF=MB- type	
I= Non-inductive	9W=9W Small size		[,] 3 rd codes: The significat es of the resistance	nt	MK=MK type MC=MC-type	
	S4=1/4W S2=1/2W		ode: the power of ten.		ML=M type F0=F type	
	1S=1WS 2S=2WS	Блан	nple: 20KΩ: 0203 -1; K=10-2; L=10-3		F1=F1 type F2=F2 type	
	3S=3WS				F3=F3 type	
	Extra sma 5U=5WSS					
		Tolerance: G=±2% J=±5% K=+10%	A	acking Type: =Tape/Box; T= =Bulk/Box	Tape/Reel	
Approved	Checked	Prepared	File NO.	Edition	Date	Page

JLC-01-001

William Zhao

Apple Liu

Chen xiaocui

2015.11.07

1

9 / 12

10.0 Standard Packing:

10.1 Tapes in Box Packing: Unit: T/B (mm)

Part No.	0	Р	A±5	B±5	C±5	Qty/Box
MO 1/4W	52 <u>+</u> 1	5±0.3	75	116	255	5,000pcs
MO 1/2WS	52±1	5 ± 0.3	75	116	255	5,000pcs
MO 1/2W	52±1	5 ± 0.3	75	70	255	1,000pcs
MO 1WS	58 <u>+</u> 1	5±0.3	80	70	255	1,000pcs
M0 1W	58 <u>+</u> 1	5 ± 0.3	80	82	255	1,000pcs
MO 2WS	58 <u>+</u> 1	5 ± 0.3	80	82	255	1,000pcs
MO 2W	65 <u>+</u> 1	10 ± 0.5	90	119	255	1,000pcs
MO 3WS	65±1	10±0.5	90	119	255	1,000pcs
MO 3W	65±5	10 ± 0.5	90	88	255	500pcs
MO 5WSS	65 <u>+</u> 5	10 ± 0.5	90	88	255	500pcs
MO 5WS	90±5	10 ± 0.5	115	124	500	500pcs

10.2 Tapes in Reel Packing: Unit: Reel (mm)

Part No.	А	W±5	H±5	L±5	Qty/Box
M0 1/4W	73±2	85	295	293	5,000pcs
M0 1/2WS	73±2	85	295	293	5,000pcs
M0 1/2W	73±2	85	295	293	3,500pcs
MO 1WS	73±2	85	295	293	2,500pcs
M0 1W	73±2	85	295	293	2,500pcs
MO 2WS	73±2	85	295	293	2,500pcs
MO 2W	80±5	95	295	293	1,000pcs
MO 3WS	80±5	95	295	293	1,000pcs
M0 3W	80±5	95	295	293	1,000pcs
MO 5WSS	80±5	95	295	293	1,000pcs

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	10 / 12

10.3 Bulk in Box Packing: Unit: Box (mm)

Part No.	A±5	B±5	C±5	Qty. of Bag/Box
MO 1/4W	140	80	240	250/10,000pcs
M0 1/2WS	140	80	240	250/10,000pcs
M0 1/2W	140	80	240	200/4,000pcs
MO 1WS	140	80	240	200/4,000pcs
M0 1W	140	80	240	100/2,500pcs
MO 2WS	140	80	240	100/2,500pcs
MO 2W	140	80	240	100/1,500pcs
MO 3WS	140	80	240	100/1,500pcs
M0 3W	140	80	240	100/1,000pcs
MO 5WSS	140	80	240	100/1,000pcs

Part No.	A±5	B±5	C±5	Qty/Box
MO 5WS	140	80	240	25/400pcs
MO 5W	140	80	240	25/400pcs
MO 7W	140	80	240	25/300pcs

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	11 / 12

11.0 Precaution for storage/Transportation:

11.1 We strongly recommend the storage condition:

Temperature: 15°C~35°C; Humidity: 25%~75%.

Even under the storage condition mentioned above, solderability of products would degrade if stored over 1 year.

- 11.2 Store / transport cartons in the correct direction which signed on a carton side. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 11.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
- 11.3.1 In high electrostatic;
- 11.3.2 In direct sunshine, rain, snow or condensation;
- 11.3.3 Exposed to sea winds or corrosive gases, including Cl_2 , H_2S , NH_3 , SO_2 , and NO_2 .

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Apple Liu	Chen xiaocui	JLC-01-001	1	2015.11.07	12 / 12

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Metal Oxide Resistors category:

Click to view products by Uniroyal manufacturer:

Other Similar products are found below :

 009260C
 FA87/180R/5%
 ROX1SJ4R7
 R0229
 M012CT52R220J
 WK80922003900J5C00
 434529B
 WMO5S-100KJA05
 ROX1SJ12K

 ROX1SJ270K
 054084X
 054211G
 054220E
 095734G
 RS02B887R0FE73
 RSS2W470RJTB
 RSS3470RJTB
 WK202070A1003JD500

 ROX3SJR22
 WR404140A2208JFE00
 RSS551KJ
 RSS3150RJTB
 ROX5SJ39K
 MOSX1CT528R2R20F
 MHR0314SA207F70
 RSF-25JT-52

 120R
 RSF50SJT-52-330K
 RSF2WSJT-52-60R
 RSF-25JT-52-2M
 RSF50SJT-52-1M
 RSF100JT-52-360K
 RSF50SJT-52-22R
 RSF50SJT-52-21

 15R
 RSF200JT-73-280R
 RSF50SJT-52-0R5
 RSF-25JT-52-1M2
 RSF200JT-73-0R2
 RSF-50JT-52-2K5
 MO1W-150R±5%-TT63
 MO3W

 200R±5%-9T73
 ROX2SJ4K3
 ROX3SJR10
 ROX3SJR10
 ROX2SJ200K
 CPF2200R00JKRE6
 LVR01R0200FE73
 HR1206J47RP05

 HR1206J1MP05
 HR1206F680KP05
 HR1206F680KP05
 HR1206F680KP05
 HR1206F680KP05