

## Specification for Approval

# Customer 深圳市嘉立創科技發展有限公司 <br> Product Name <br> LEAD－FREE METAL OXIDE FILM FIXED RESISTORS <br> Part Name MOR SERIES $\pm 5 \%$ 

88 Longteng Road，Economic \＆Technical Development Zone，Kunshan City，Jiangsu，China
TEL： 8651257631411 ／ 22 ／ 33
FAX： 8651257631431
Email：globalsales＠uniohm．com localsales＠uniohm．com

| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $1 / 12$ |

厚 聲 電 子 工 業 有 限 公 司
Uniroyal Electronics Industry Co．，Ltd．
ISO14001

## Contents

Index Page
1.0 Scope ..... 4
2．0 Ratings \＆dimension ..... ． 4
3．0 Structure ..... 5
4．0 Mark ..... 5
5．0 Derating curve ..... 6
6．0 Voltage rating ..... 6
7．0 Performance specification ..... 6
8．0 Explanation of Part No．system ..... 8
9．0 Ordering procedure ..... 10
10．0 Standard packing ..... 10
11．0 Precaution for storage／Transportation． ..... 12

| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $2 / 12$ |

ISO 14001
I


245468


COC0400101065

| File Name：MO SERIES $\pm 5 \%$ | Date | 2015.11 .07 | Edition No． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Amendment Record |  |  | Signature |


| Edition | Prescription of amendment | Amend Page | Amend Date | Amended by | Checked by |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |


| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $3 / 12$ |

厚 聲 電 子 工 業 有 限 公 司
Uniroyal Electronics Industry Co．，Ltd．


ISO14001 ISO／TS16949 24＋546


REQ．Nr．A759

### 1.0 Scope：

This specification for approve Lead－Free Metal Oxide Film Fixed Resistors manufactured by UNIOHM．

## 2．0 Ratings \＆dimension：



2．1 Normal size

| Type | Dimension（mm） |  |  |  | Max <br> working <br> voltage | Max overload voltage | Dielectric withstanding voltage | Tolerance | Resistance <br> range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D | L | $\mathrm{d} \pm 0.05$ | $\mathrm{H} \pm 3$ |  |  |  |  |  |
| M01／4W | $2.2 \pm 0.5$ | $6.5 \pm 1.0$ | 0.54 | 28 | 250 V | 400 V | 250 V | $\pm 5 \%$ | $0.1 \Omega \sim 470 \mathrm{~K} \Omega$ |
| M01／2W | $3.0 \pm 0.6$ | $9.5 \pm 1.0$ | 0.54 | 28 | 250V | 400 V | 250V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| M01W | $4.0 \pm 0.6$ | $11.5 \pm 1.0$ | 0.65 | 28 | 350 V | 600 V | 350 V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| MO2W | $5.0 \pm 0.6$ | $15.5 \pm 1.0$ | 0.70 | 28 | 350V | 600V | 350V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| M03W | $6.0 \pm 0.6$ | $17.5 \pm 1.0$ | 0.75 | 28 | 500 V | 800 V | 500 V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| M05W | $8.0 \pm 0.6$ | $24.5 \pm 1.0$ | 0.75 | 38 | 750V | 1000 V | 750V | $\pm 5 \%$ | $0.1 \Omega \sim 680 \mathrm{~K} \Omega$ |
| M07W | $8.0 \pm 0.6$ | $29.5 \pm 1.0$ | 0.75 | 38 | 750V | 1000 V | 750V | $\pm 5 \%$ | 20 $2 \sim 150 \mathrm{~K} \Omega$ |
| M08W | $8.0 \pm 0.6$ | $39.5 \pm 1.0$ | 0.75 | 38 | 750V | 1000 V | 750V | $\pm 5 \%$ | $30 \Omega \sim 200 \mathrm{~K} \Omega$ |
| M09W | $8.0 \pm 0.6$ | $52.5 \pm 1.0$ | 0.75 | 38 | 750V | 1000 V | 750V | $\pm 5 \%$ | $50 \Omega \sim 200 \mathrm{~K} \Omega$ |

2．2 Small Size \＆Extra Small Size

| Type | Dimension（mm） |  |  |  | Max <br> Working <br> Voltage | Max <br> overload <br> Voltage | Dielectric withstanding voltage | Tolerance | Resistance <br> Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D | L | $\mathrm{d} \pm 0.05$ | $\mathrm{H} \pm 3$ |  |  |  |  |  |
| M01／2WS | $2.2 \pm 0.5$ | $6.5 \pm 1.0$ | 0.54 | 28 | 250 V | 400 V | 250 V | $\pm 5 \%$ | $0.1 \Omega \sim 470 \mathrm{~K} \Omega$ |
| M01WS | $3.5 \pm 0.6$ | $9.5 \pm 1.0$ | 0.60 | 28 | 350 V | 600 V | 350 V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| M02WS | $4.5 \pm 0.6$ | $11.5 \pm 1.0$ | 0.65 | 28 | 350 V | 600 V | 350 V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| M03WS | $5.0 \pm 0.6$ | $15.5 \pm 1.0$ | 0.70 | 28 | 350 V | 600 V | 350 V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| M05WSS | $6.0 \pm 0.6$ | $17.5 \pm 1.0$ | 0.75 | 28 | 500V | 800V | 500 V | $\pm 5 \%$ | $0.1 \Omega \sim 560 \mathrm{~K} \Omega$ |
| M05WS | $8.0 \pm 0.6$ | $24.5 \pm 1.0$ | 0.75 | 38 | 500 V | 800 V | 500 V | $\pm 5 \%$ | $0.1 \Omega \sim 680 \mathrm{~K} \Omega$ |


| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $4 / 12$ |

## 厚 聲 電 子 工 業 有 限 公 司

Uniroyal Electronics Industry Co．，Ltd．


## 3．0 Structure：



| No． | Name | Component |
| :---: | :--- | :--- |
| 1 | Basic body | Ceramic |
| 2 | Resistor layer | Metal Oxide Film |
| 3 | End cap | Steel（Tinned iron cap） |
| 4 | Lead wire | Tinned copper wire |
| 5 | Joint | By welding |
| 6 | Coating | Silicon resin with different color（1）Gray（Normal size）（2）Sea blue（Small size） |
| 7 | Color code | Epoxy resin |

## 4．0 Mark

Resistors shall be marked with color coding
Colors shall be in accordance with JIS C 0802


## 4．1 Label：

Label shall have some items as below：
1 Type and style
2 Nominal resistances
3 Resistance tolerances
4 Quantities
5 Lot number
6 PPM

| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $5 / 12$ |



REQ．Ne．A759

## 5．0 Derating Curve：

Resistors shall have a power rating based on continuous load operation at an ambient temperature from $-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．For temperature in excess of $70^{\circ} \mathrm{C}$ ，the power would be derate as shown in figure 1

Figure1


## 6．0 Voltage rating：

Resistors should have a direct－current（DC）continuous voltage rating and an alternating－current （AC）continuous voltage rating relates to Power Rating，formula shown as below：

$$
\mathrm{RCWV}=\sqrt{P * R}
$$

RCWV：Rated DC or RMS ac continuous working voltage at commercial－line frequency and waveform （Volt．）

P：Power Rating（Watt．）
R：Nominal Resistance（Ohm）
Resistors would be burned out if it overloaded，such as higher than the maximum value of series＇RCWV． And we named 2.5 times RCWV is OVERLOAD Voltage．

## 7．0 Performance specification：

| Item | Limits |  | Test Method（JIS－C－5201\＆5202） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature Coefficient | ```1/4W 1/2WS \(\leqq 100 \mathrm{~K} \Omega: \pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) \(100 \mathrm{~K} \Omega<\mathrm{R} \leqq 470 \mathrm{~K} \Omega: 0 \sim-700 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) 1/2W , 1WS: \(\leqq 120 \mathrm{~K} \Omega: \pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) \(120 \mathrm{~K} \Omega<\mathrm{R} \leqq 560 \mathrm{~K} \Omega 0 \sim-700 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) 1W, 2W, 2WS, 3W, 3WS, 5WSS \(\leqq 150 \mathrm{~K} \Omega: \pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) \(150 \mathrm{~K} \Omega<\mathrm{R} \leqq 560 \mathrm{~K} \Omega \quad 0 \sim-700 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) 5W 5WS \(\leqq 180 \mathrm{~K} \Omega: \pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) \(180 \mathrm{~K} \Omega<\mathrm{R} \leqq 680 \mathrm{~K} \Omega \quad 0 \sim-700 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\) 7W • 8W • 9W: \(\pm 350 \mathrm{PPM} /{ }^{\circ} \mathrm{C}\)``` |  | 4．8 Natu centigrade <br> R1：resista R2：resista Test patte | resistance $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{~T}_{2}-\mathrm{T}\right.}$ <br> value at ro value at ro room temp | hanges per $10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ <br> temp．（T1） <br> temp．$+100^{\circ} \mathrm{C}$ <br> $1)$ ，room temp． | Degree $0^{\circ} \mathrm{C}(\mathrm{~T} 2)$ |
| Short－time overload | Resistance change rate is： <br> $\pm(1 \%+0.05 \Omega)$ Max for normal size． <br> $\pm(2 \%+0.05 \Omega)$ Max for small size． <br> With no evidence of mechanical damage． |  | 4．13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds． |  |  |  |
| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015．11．07 | 6 ／ 12 |



| Item | Limits | Test Method (JIS-C-5201\&5202) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Dielectric withstanding voltage | No evidence of flashover mechanical damage, arcing or insulation break down. | 4.7 Resistors shall be clamped in the trough of a $90^{\circ}$ metallic V-block and shall be tested at AC potential respectively specified in the above list for $60-70$ seconds. |  |  |
| Pulse overload | Resistance change rate is: <br> $\pm(2 \%+0.05 \Omega)$ Max for normal size. <br> $\pm(5 \%+0.05 \Omega)$ Max for small size. <br> With no evidence of mechanical damage. | 4.28 Resistance change after 10,000 cycles ( 1 second "ON", 25 seconds "OFF") at 4 times RCWV. |  |  |
| Terminal strength | No evidence of mechanical damage | 4.16 Direct load: <br> Resistance to a 2.5 Kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through $90^{\circ}$ at a point of about 6 mm from the body of the resistor and shall be rotated through $360^{\circ}$ about the original axis of the bent terminal in alternating direction for a total of 3 rotations. |  |  |
| Resistance to soldering heat | Resistance change rate is: <br> $\pm$ ( $1 \%+0.05 \Omega$ ) Max. With no evidence of mechanical damage | 4.18 Permanent resistance change when leads immersed to a point $2.0-2.5 \mathrm{~mm}$ from the body in $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ solder for $10 \pm 1$ seconds. |  |  |
| Solderability | 95\% coverage Min. | 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. <br> Test temp. Of solder: $245^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ <br> Dwell time in solder: 2~3seconds. |  |  |
| Resistance to solvent | No deterioration of protective coatings \& markings | 4.29 Specimens shall be immersed in a bath of trichloroethylene completely for 3 min . With ultrasonic |  |  |
| Temperature cycling | Resistance change rate is: $\pm(2 \%+0.05 \Omega)$ Max.. With no evidence of mechanical damage. | 4.19 Resistance change after continuous five cycles for duty cycle specified: |  |  |
|  |  | Step | Temperature | Time |
|  |  | 1 | $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ | 30 mins |
|  |  | 2 | Room temp. | 10-15 mins |
|  |  | 3 | $+155^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ | 30 mins |
|  |  | 4 | Room temp. | 10-15 mins |
|  |  | *Step1-4 Continuous 5 cycles |  |  |
| Humidity (steady state) | Resistance change rate is: <br> $\pm(2 \%+0.05 \Omega)$ Max. With no evidence of mechanical damage | 4.24 temporary resistance changes after a 240 hours exposure in a humidity test chamber controlled at $40^{\circ} \mathrm{C} \pm$ $2^{\circ} \mathrm{C}$ and 90 to $95 \%$ relative humidity. |  |  |
| Load life in humidity | $\begin{aligned} & \Delta \mathrm{R} / \mathrm{R}: \\ & \leqq \pm 5 \% \text { for }<100 \mathrm{~K} \Omega \text {; } \\ & \leqq \pm 10 \% \text { for } \geqq 100 \mathrm{~K} \Omega \text {; } \end{aligned}$ | 7.9 resistance change after 1,000 hours ( 1.5 hours "ON", 0.5 hour "OFF") at RCWV in a humidity test chamber controlled at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to $95 \%$ relative humidity. <br> 4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ambient. |  |  |
| Load life | $\begin{aligned} & \Delta \mathrm{R} / \mathrm{R} \text { : } \\ & \leqq \pm 5 \% \text { for }<100 \mathrm{~K} \Omega \text {; } \\ & \leqq \pm 10 \% \text { for } \geqq 100 \mathrm{~K} \Omega \text {; } \end{aligned}$ |  |  |  |


| Approved | Checked | Prepared | File NO. | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC-01-001 | 1 | 2015.11 .07 | $7 / 12$ |


| Item | Limits |
| :---: | :--- |
| Flame retardant | Resistor insulation is self－extinguishing within 10 <br> seconds after externally applied flame is removed． |

4．26 The burner is placed remote fro，resistor ignited and adjusted to produce a blue flame 38 mm in height and a top of flame 127 mm above the top of burner tube． Resistor is supported from its lead at $45^{\circ}$ from the horizontal so that the lower end of resistor is the top of blue flame．The test flame is placed to remain for 15 seconds and removed for 15 seconds．The operation is to be repeated until resistor has been subjected to 5 application of test flame．

## 8．0 Explanation of Part No．system：

The standard Part No．contains 14 codes．
$8.11^{\text {st }}$ 3 $^{\text {rd }}$ codes：Product type
$8.24^{\text {th }}$ code：Special feature．
Example：MOR0＝Metal Oxide Film Fixed Resistors
$8.35^{\text {th }} \sim 6^{\text {th }}$ codes：Power rating
8．3．1 The $5^{\text {th }}$ code would be＂$W$＂，＂$S$＂，or＂$U$＂if the resistors＇power rating is lower than $1 W$ ．
8．3．2 The $6^{\text {th }}$ code would be＂$W$＂，＂$S$＂，or＂$U$＂if the resistors＇power rating is greater than 1 W ．
8．3．3 We named＂$W$＂to indicate＂normal size＂，＂$S$＂for＂small size＂，and＂$U$＂for＂ultra－small size＂． 1／16W～1／2W（ $<1 \mathrm{~W}$ ）

| Wattage | $1 / 2$ | $1 / 3$ | $1 / 4$ | $1 / 5$ | $1 / 6$ | $1 / 8$ | $1 / 10$ | $1 / 16$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Normal size | W 2 | W 3 | W 4 | W 5 | W 6 | W 8 | WA | WG |
| Small size | S 2 | S 3 | S 4 | S 5 | S 6 | S 8 | SA | SG |
| Ultra－small size | U 2 | U 3 | U 4 | U 5 | U 6 | U 8 | UA | UG |

$1 \mathrm{~W} \sim 16 \mathrm{~W}(\geqq 1 \mathrm{~W})$

| Wattage | 1 | 2 | 3 | 5 | 7 | 8 | 9 | 10 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Normal size | 1 W | 2 W | 3 W | 5 W | 7 W | 8 W | 9 W | AW | FW |
| Small size | 1 S | 2 S | 3 S | 5 S | 7 S | 8 S | 9 S | AS | FS |
| Ultra－small size | 1 U | 2 U | 3 U | 5 U | 7 U | 8 U | 9 U | AU | FU |

$8.47^{\text {th }}$ code：Resistance Tolerance．
$\mathrm{F}= \pm 1 \% \quad \mathrm{G}= \pm 2 \% \quad \mathrm{~J}= \pm 5 \% \quad \mathrm{~K}= \pm 10 \%$
$8.58^{\text {th }} \sim 11^{\text {th }}$ codes：Resistance Value．
8．5．1 For the standard resistance values of E－24 series in $5 \%$ and $10 \%$ tolerance， $8^{\text {th }}$ code would be＂ 0 ＂， $9^{\text {th }} \sim 10^{\text {th }}$ codes would be the significant figures of the resistance，and $11^{\text {th }}$ code is the power of ten．

For the standard resistance values of E－ 96 series in $\leq 2 \%$ tolerance， $8^{\text {th }} \sim 10^{\text {th }}$ codes would be the significant figures of the resistance，and $11^{\text {th }}$ code is the power of ten．
8．5．2 As mentioned above， $11^{\text {th }}$ code would be the power of ten，so we use those code in $11^{\text {th }}$ digit shown as following：

| $0=10^{0}$ | $1=10^{1}$ | $2=10^{2}$ | $3=10^{3}$ | $4=10^{4}$ | $5=10^{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $6=10^{6}$ | $\mathrm{~J}=10^{-1}$ | $\mathrm{~K}=10^{-2}$ | $\mathrm{~L}=10^{-3}$ | $\mathrm{M}=10^{-4}$ |  |


| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $8 / 12$ |


$8.612^{\text {th }} \sim 14^{\text {th }}$ codes
8.6.1 $12^{\text {th }}$ code: Packaging Type

A=Tape/Box (Ammo pack)
T=Tape/Reel
B=Bulk/Box
$\mathrm{P}=$ Tape/Box of PT-26 products
8.6.2 $13^{\text {th }}$ code: Standard Packing Quantity of Tape/Box \& Tape/Reel packaging types.

If the packing type is Bulk packing, this digit should be " 0 ".
A=500pcs
$B=2500 \mathrm{pcs}$
$1=1000 \mathrm{pcs}$
$2=2000 \mathrm{pcs}$
8.6.3 For the FORMED type products, $13^{\text {th }}{ }^{\sim} 14^{\text {th }}$ codes would be forming types shown as below:

MF=M-type with flattened lead wire $\quad$ MK= M-type with kinked lead wire
$M L=M$-type with normal lead wire
$\mathrm{MC}=\mathrm{M}$ type with kinked lead and narrow pitch wire
F0 $=$ F-type $\quad$ F1 $=$ F1-type $\quad$ F2 $=$ F2-type $\quad$ F3 $=$ F3-type
8.6.4 $14^{\text {th }}$ code: Special features for additional information.
$\mathrm{P}=$ Panasert type $\quad 1=$ Avisert type $1 \quad 2=$ Avisert type 2
3=Avisert type 3
A=Cutting type CO 1/4W-A type
$\mathrm{B}=$ Cutting type $\mathrm{CO} 1 / 4 \mathrm{~W}-\mathrm{B}$ type
9.0 Ordering Procedure (Example: MOR $5 \mathrm{~W} \quad \pm 5 \% \quad 30 \mathrm{~K} \Omega \quad \mathrm{~T} / \mathrm{B}-1000$ )


| Approved | Checked | Prepared | File NO. | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC-01-001 | 1 | 2015.11 .07 | $9 / 12$ |

厚 聲 電 子 工 業 有 限 公 司
Uniroyal Electronics Industry Co．，Ltd．


ISO14001 ISO／TS16949 244546


REQ．N．A．A759

## 10．0 Standard Packing：

10．1 Tapes in Box Packing：Unit：T／B（mm）


| Part No． | 0 | P | $\mathrm{A} \pm 5$ | $\mathrm{~B} \pm 5$ | $\mathrm{C} \pm 5$ | $\mathrm{Qty} / \mathrm{Box}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| M0 1／4W | $52 \pm 1$ | $5 \pm 0.3$ | 75 | 116 | 255 | $5,000 \mathrm{pcs}$ |
| M0 1／2WS | $52 \pm 1$ | $5 \pm 0.3$ | 75 | 116 | 255 | $5,000 \mathrm{pcs}$ |
| M0 1／2W | $52 \pm 1$ | $5 \pm 0.3$ | 75 | 70 | 255 | $1,000 \mathrm{pcs}$ |
| M0 1WS | $58 \pm 1$ | $5 \pm 0.3$ | 80 | 70 | 255 | $1,000 \mathrm{pcs}$ |
| M0 1W | $58 \pm 1$ | $5 \pm 0.3$ | 80 | 82 | 255 | $1,000 \mathrm{pcs}$ |
| M0 2WS | $58 \pm 1$ | $5 \pm 0.3$ | 80 | 82 | 255 | $1,000 \mathrm{pcs}$ |
| M0 2W | $65 \pm 1$ | $10 \pm 0.5$ | 90 | 119 | 255 | $1,000 \mathrm{pcs}$ |
| M0 3WS | $65 \pm 1$ | $10 \pm 0.5$ | 90 | 119 | 255 | $1,000 \mathrm{pcs}$ |
| M0 3W | $65 \pm 5$ | $10 \pm 0.5$ | 90 | 88 | 255 | 500 pcs |
| M0 5WSS | $65 \pm 5$ | $10 \pm 0.5$ | 90 | 88 | 255 | 500 pcs |
| M0 5WS | $90 \pm 5$ | $10 \pm 0.5$ | 115 | 124 | 500 | 500 pcs |

10．2 Tapes in Reel Packing：Unit：Reel（mm）


| Part No． | A | $\mathrm{W} \pm 5$ | $\mathrm{H} \pm 5$ | $\mathrm{~L} \pm 5$ | Qty／Box |
| :--- | :---: | :---: | :---: | :---: | :---: |
| MO 1／4W | $73 \pm 2$ | 85 | 295 | 293 | $5,000 \mathrm{pcs}$ |
| MO 1／2WS | $73 \pm 2$ | 85 | 295 | 293 | $5,000 \mathrm{pcs}$ |
| MO 1／2W | $73 \pm 2$ | 85 | 295 | 293 | $3,500 \mathrm{pcs}$ |
| MO 1WS | $73 \pm 2$ | 85 | 295 | 293 | $2,500 \mathrm{pcs}$ |
| MO 1W | $73 \pm 2$ | 85 | 295 | 293 | $2,500 \mathrm{pcs}$ |
| MO 2WS | $80 \pm 5$ | 85 | 295 | 293 | $2,500 \mathrm{pcs}$ |
| MO 2W | $80 \pm 5$ | 95 | 295 | 293 | $1,000 \mathrm{pcs}$ |
| MO 3WS | $80 \pm 5$ | 95 | 295 | 293 | $1,000 \mathrm{pcs}$ |
| MO 3W | $80 \pm 5$ | 95 | 295 | 293 | $1,000 \mathrm{pcs}$ |
| MO 5WSS |  |  |  | $1,000 \mathrm{pcs}$ |  |


| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $10 / 12$ |

厚 聲 電 子 工 業 有 限 公 司
Uniroyal Electronics Industry Co．，Ltd．


10．3 Bulk in Box Packing：Unit：Box（mm）


| Part No． | $\mathrm{A} \pm 5$ | $\mathrm{~B} \pm 5$ | $\mathrm{C} \pm 5$ | Qty．of Bag／Box |
| :--- | :---: | :---: | :---: | :---: |
| MO 1／4W | 140 | 80 | 240 | $250 / 10,000 \mathrm{pcs}$ |
| MO 1／2WS | 140 | 80 | 240 | $250 / 10,000 \mathrm{pcs}$ |
| MO 1／2W | 140 | 80 | 240 | $200 / 4,000 \mathrm{pcs}$ |
| MO 1WS | 140 | 80 | 240 | $200 / 4,000 \mathrm{pcs}$ |
| MO 1W | 140 | 80 | 240 | $100 / 2,500 \mathrm{pcs}$ |
| MO 2WS | 140 | 80 | 240 | $100 / 2,500 \mathrm{pcs}$ |
| MO 2W | 140 | 80 | 240 | $100 / 1,500 \mathrm{pcs}$ |
| MO 3WS | 140 | 80 | 240 | $100 / 1,500 \mathrm{pcs}$ |
| MO 3W | 140 | 80 | 240 | $100 / 1,000 \mathrm{pcs}$ |
| M0 5WSS | 140 |  | 240 | $100 / 1,000 \mathrm{pcs}$ |



| Part No． | $\mathrm{A} \pm 5$ | $\mathrm{~B} \pm 5$ | $\mathrm{C} \pm 5$ | Qty／Box |
| :--- | :---: | :---: | :---: | :---: |
| MO 5WS | 140 | 80 | 240 | $25 / 400 \mathrm{pcs}$ |
| MO 5W | 140 | 80 | 240 | $25 / 400 \mathrm{pcs}$ |
| MO 7W | 140 | 80 | 240 | $25 / 300 \mathrm{pcs}$ |


| Approved | Checked | Prepared | File NO． | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC－01－001 | 1 | 2015.11 .07 | $11 / 12$ |

Uniroyal Electronics Industry Co., Ltd.
UniOhm


ISO/TS16949

$24+546$


REQ.Ne.A759

### 11.0 Precaution for storage/Transportation:

11.1 We strongly recommend the storage condition:

Temperature: $15^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$; Humidity: $25 \% \sim 75 \%$.
Even under the storage condition mentioned above, solderability of products would degrade if stored over 1 year.
11.2 Store / transport cartons in the correct direction which signed on a carton side. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
11.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:

### 11.3.1 In high electrostatic;

11.3.2 In direct sunshine, rain, snow or condensation;
11.3.3 Exposed to sea winds or corrosive gases, including $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}$, and $\mathrm{NO}_{2}$.

| Approved | Checked | Prepared | File NO. | Edition | Date | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| William Zhao | Apple Liu | Chen xiaocui | JLC-01-001 | 1 | 2015.11 .07 | $12 / 12$ |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Metal Oxide Resistors category:
Click to view products by Uniroyal manufacturer:
Other Similar products are found below :
009260C FA87/180R/5\% ROX1SJ4R7 R0229 M012CT52R220J WK80922003900J5C00 434529B WMO5S-100KJA05 ROX1SJ12K ROX1SJ270K 054084X 054211G 054220E 095734G RS02B887R0FE73 RSS2W470RJTB RSS3470RJTB WK202070A1003JD500 ROX3SJR22 WR404140A2208JFE00 RSS551KJ RSS3150RJTB ROX5SJ39K MOSX1CT528R2R20F MHR0314SA207F70 RSF-25JT-52120R RSF50SJT-52-330K RSF2WSJT-52-60R RSF-25JT-52-2M RSF50SJT-52-1M RSF100JT-52-360K RSF50SJT-52-22R RSF50SJT-5215R RSF200JT-73-280R RSF50SJT-52-0R5 RSF-25JT-52-1M2 RSF200JT-73-0R2 RSF-50JT-52-2K5 MO1W-150R $\pm 5 \%$-TT63 MO3W200R $\pm 5 \%-9 \mathrm{~T} 73$ ROX2SJ4K3 ROX5SJ120R ROX3SJR10 ROX2SJ200K CPF2200R00JKRE6 LVR01R0200FE73 HR1206J47RP05 HR1206J1MP05 HR1206F430KP05 HR1206F680KP05

