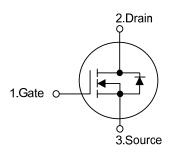
UNISONIC TECHNOLOGIES CO., LTD

12N60 Power MOSFET

12A, 600V N-CHANNEL **POWER MOSFET**

DESCRIPTION

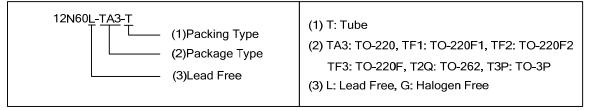

The UTC 12N60 are N-Channel enhancement mode power field effect transistors (MOSFET) which are produced using UTC's proprietary, planar stripe, DMOS technology.

These devices are suited for high efficiency switch mode power supply. To minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode the advanced technology has been especially tailored.

FEATURES

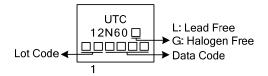
- * $R_{DS(ON)}$ < 0.8 Ω @ V_{GS} = 10 V
- * Ultra low gate charge (typical 42 nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 25 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness

SYMBOL



TO-220 TO-220F TO-220F1 TO-220F2 TO-262

ORDERING INFORMATION


Ordering Number		Daakaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
12N60L-TA3-T	12N60G-TA3-T	TO-220	G	D	S	Tube	
12N60L-TF1-T	12N60G-TF1-T	TO-220F1	G	D	S	Tube	
12N60L-TF2-T	12N60G-TF2-T	TO-220F2	G	D	S	Tube	
12N60L-TF3-T	12N60G-TF3-T	TO-220F	G	D	S	Tube	
12N60L-T2Q-T	12N60G-T2Q-T	TO-262	G	D	S	Tube	
12N60L-T3P-T	12N60G-T3P-T	TO-3P	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 7

■ MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	600	V
Gate-Source Voltage		V_{GSS}	±30	V
Avalanche Current (Note 2)		I _{AR}	12	Α
Drain Current	Continuous	I _D	12	Α
	Pulsed (Note 2)	I_{DM}	48	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	790	mJ
	Repetitive (Note 2)	E _{AR}	24	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns
Power Dissipation	TO-220 / TO-262		225	W
	TO-220F / TO-220F1	Б	51	W
	TO-220F2	P_D	54	W
	TO-3P		260	W
Junction Temperature		T_J	+150	°C
Operating Temperature		T _{OPR}	-55 ~ +150	°C
Storage Temperature		T _{STG}	-55 ~ + 150	°C

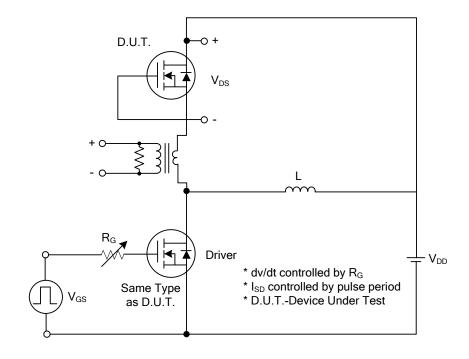
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

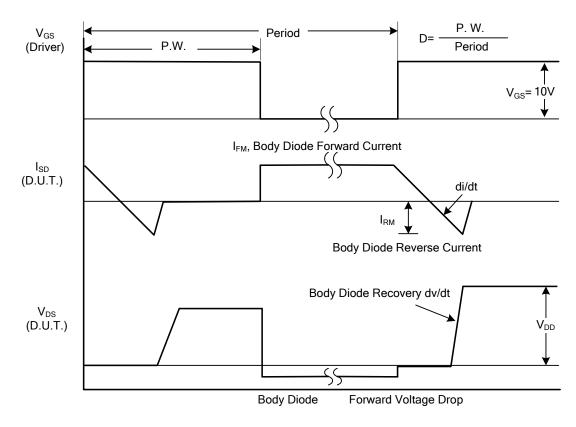
- 2. Repetitive Rating : Pulse width limited by maximum junction temperature
- 3. L = 10mH, I_{AS} = 12A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 12A$, di/dt $\le 200A/s$, $V_{DD} \le BV_{DSS}$ Starting $T_J = 25$ °C

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient	TO-220/TO-220F TO-220F1/TO-220F2 TO-262	θја	62.5	°C/W
	TO-3P		40	°C/W
Junction to Case	TO-220 / TO-262	θјс	0.56	°C/W
	TO-220F/TO-220F1		2.43	°C/W
	TO-220F2		2.31	°C/W
	TO-3P		0.48	°C/W

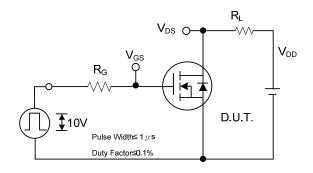

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	600			V			
Drain-Source Leakage Current	I _{DSS}	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ			
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA			
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS}/\triangle T_{J}$	I _D =250μA, Referenced to 25°C		0.7		V/°C			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 6.0A$		0.6	0.8	Ω			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C _{ISS}	-V _{DS} = 25 V, V _{GS} = 0 V, -f = 1MHz		1480	1900	pF			
Output Capacitance	Coss			200	270	pF			
Reverse Transfer Capacitance	C _{RSS}			25	35	pF			
Gate Resistance	R_G	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	0.2		1.2	Ω			
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	t _{D(ON)}	V_{DD} = 300V, I_{D} = 12A, R_{G} = 25 Ω (Note 1, 2)		30	70	ns			
Turn-On Rise Time	t_R			115	240	ns			
Turn-Off Delay Time	t _{D(OFF)}			95	200	ns			
Turn-Off Fall Time	t _F			85	180	ns			
Total Gate Charge	Q_{G}	-V _{DS} = 480V,I _D = 12A, -V _{GS} = 10 V (Note 1, 2)		42	54	nC			
Gate-Source Charge	Q_GS			8.6		nC			
Gate-Drain Charge	Q_GD			21		nC			
SOURCE- DRAIN DIODE RATINGS AND CH	ARACTERIST	rics							
Drain-Source Diode Forward Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 12\text{A}$			1.4	V			
Maximum Continuous Drain-Source Diode	la la				12	Α			
Forward Current	I _S				12	^			
Maximum Pulsed Drain-Source Diode	I _{SM}				48	Α			
Forward Current	ISM				70	^			
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V}, I_S = 12A,$		380		ns			
Reverse Recovery Charge	Q_{RR}	dI _F /dt = 100 A/μs (Note 1)		3.5		μC			

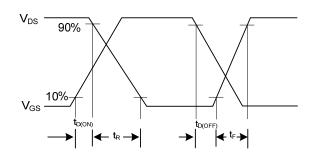

Notes: 1. Pulse Test : Pulse width ≤300µs, Duty cycle ≤ 2%

^{2.} Essentially independent of operating temperature

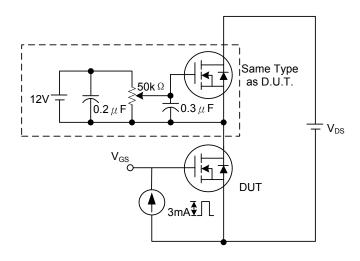
■ TEST CIRCUITS AND WAVEFORMS

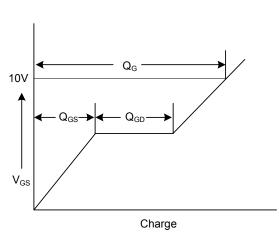


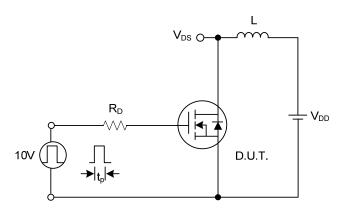
Peak Diode Recovery dv/dt Test Circuit

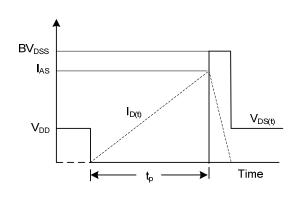


Peak Diode Recovery dv/dt Waveforms

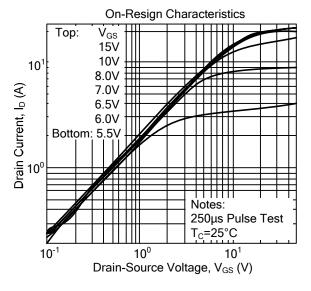

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

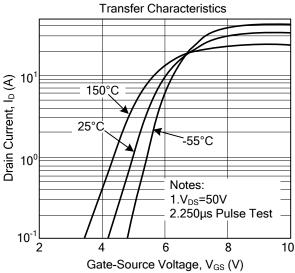

Switching Test Circuit

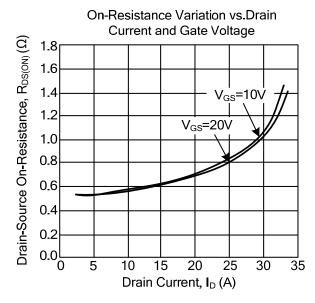

Switching Waveforms

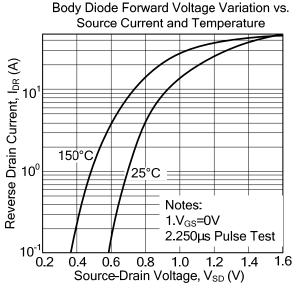

Gate Charge Test Circuit

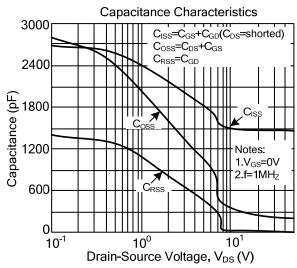
Gate Charge Waveform

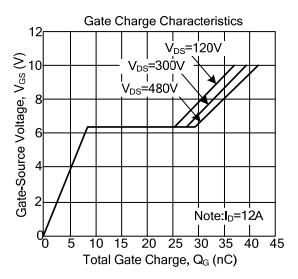


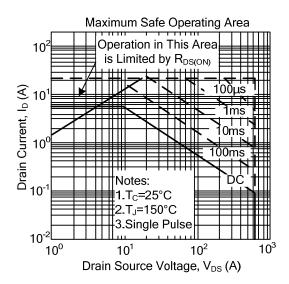

Unclamped Inductive Switching Test Circuit

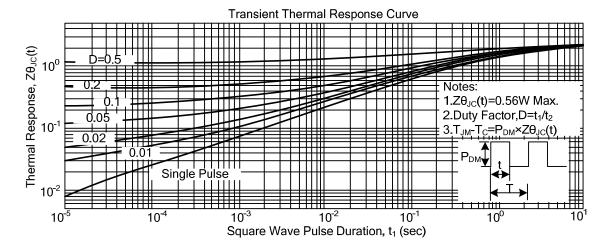



Unclamped Inductive Switching Waveforms


■ TYPICAL CHARACTERISTICS







■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2267(Q) 2SK2545(Q,T) 405094E
423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD TK31J60W5,S1VQ(O
2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969
NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1
DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1
MCM3400A-TP DMTH10H4M6SPS-13 IPS60R1K0PFD7SAKMA1 IPS60R360PFD7SAKMA1 IPS60R600PFD7SAKMA1
IPS60R210PFD7SAKMA1 DMN2990UFB-7B ISZ040N03L5ISATMA1