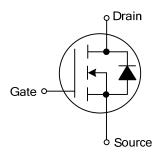


UNISONIC TECHNOLOGIES CO., LTD

25N10 **Power MOSFET**

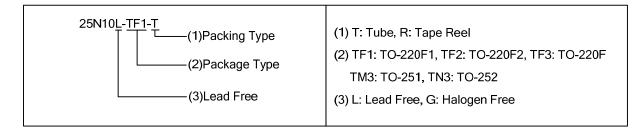
N-CHANNEL ENHANCEMENT MODE POWER MOSFET

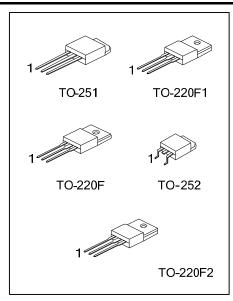
DESCRIPTION


The UTC 25N10 is an N-channel enhancement mode power MOSFET and it uses UTC's perfect technology to provide designers with fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

It is generally suitable for all commercial-industrial applications and DC/DC converters requiring low voltage.

FEATURES


- * Single Drive Requirement
- * Low Gate Charge
- * RoHS Compliant


SYMBOL

ORDERING INFORMATION

Ordering Number		Deelsess	Pin Assignment			Deaking	
Lead Free Plating	Halogen Free	Package	1	2	3	Packing	
25N10L-TF1-T	25N10G-TF1-T	TO-220F1	G	D	S	Tube	
25N10L-TF2-T	25N10G-TF2-T	TO-220F2	G	D	S	Tube	
25N10L-TF3-T	25N10G-TF3-T	TO-220F	G	D	S	Tube	
25N10L-TM3-T	25N10G-TM3-T	TO-251	G	D	S	Tube	
25N10L-TN3-R	25N10G-TN3-R	TO-252	G	D	S	Tape Reel	

■ MARKING INFORMATION

PACKAGE	MARKING
TO-220F1 TO-220F2 TO-220 TO-251 TO-252	UTC 25N10 ☐

■ ABSOLUTE MAXIMUM RATINGS

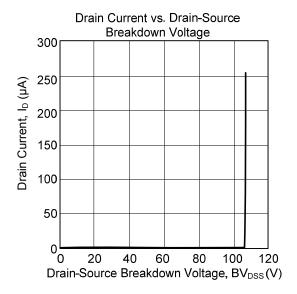
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain Source Voltage		V_{DSS}	100	V	
Gate Source Voltage		V_{GSS}	±20	V	
Continuous Drain Current	T _C =25°C	I _D	23	Α	
(V _{GS} =10V)	T _C = 100°C	I _D	14.6	Α	
Pulsed Drain Current (Note 2)		I _{DM}	80	Α	
Total Power Dissipation (T _C =25°C)	TO-220F/TO-220F1		50		
	TO-220F2	P_{D}	52	W	
	TO-251/TO-252		41		
Operating Junction Temperature		TJ	-55 ~ +150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

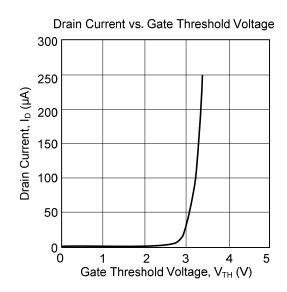
Note:1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

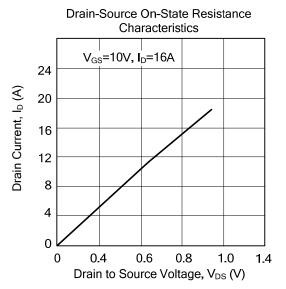
■ THERMAL DATA

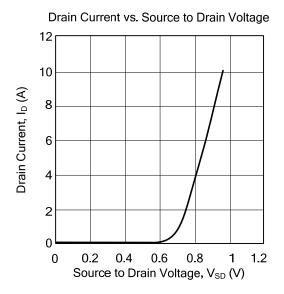
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220F/TO-220F1 TO-220F2	θ_{JA}	62.5	°C/W	
	TO-251/TO-252		100		
Junction to Case	TO-220F/TO-220F1		2.5	°C/W	
	TO-220F2	θ_{JC}	2.4		
	TO-251/TO-252		3		

^{2.} Pulse width limited by max. junction temperature


25N10


■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)


DADAMETED	0) (1 4 5 0 1	TEGT COMPUTIONS		T) (D	24224		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNII	
OFF CHARACTERISTICS	 	<u> </u>	ı	1			
Orain-Source Breakdown Voltage BV _D		V_{GS} =0V, I_D =1mA	100			V	
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{J}$	Reference to 25°C , I _D =1mA		0.14		V/°C	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =100V, V _{GS} =0V, T _J =25°C			25	μΑ	
Dialii-Source Leakage Current	IDSS	V _{DS} =80V, V _{GS} =0V,T _J =150°C			100	μΑ	
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V			±100	nA	
ON CHARACTERISTICS			-				
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V	
Static Drain-Source On-Resistance (Note)	R _{DS(ON)}	V _{GS} =10V, I _D =16A			80	mΩ	
Forward Transconductance	g FS	V _{DS} =10V, I _D =16A		14		S	
DYNAMIC PARAMETERS							
Input Capacitance	C _{ISS}	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		1060	1700	pF	
Output Capacitance	Coss			270		pF	
Reverse Transfer Capacitance	C _{RSS}			8		pF	
Gate Resistance	R_{G}			1.5	2.3	Ω	
SWITCHING PARAMETERS							
Total Gate Charge (Note)	Q_{G}			19	30	nC	
Gate Source Charge	Q_GS	V _{GS} =10V, V _{DS} =80V, I _D =16A		5		nC	
Gate Drain Charge	Q_GD	7		6		nC	
Turn-ON Delay Time ¹	t _{D(ON)}			10		ns	
Turn-ON Rise Time	t_R	V_{DD} =50V, I_{D} =16A, R_{G} =3.3 Ω ,		28		ns	
Turn-OFF Delay Time	t _{D(OFF)}	V_{GS} =10V, R_D =3.125 Ω		17		ns	
Turn-OFF Fall-Time	t₅			2		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS							
Drain-Source Diode Forward Voltage (Note)	V _{SD}	I _S =16A, V _{GS} =0V			1.3	V	
Reverse Recovery Time	t _{RR}	I _S =16A,V _{GS} =0V,		90		ns	
Reverse Recovery Charge	Q_{RR}	dI/dt=100A/μs		380		nC	


Note: Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2%.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3