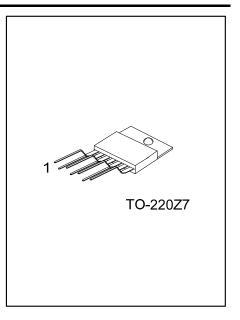
UNISONIC TECHNOLOGIES CO., LTD

A7240

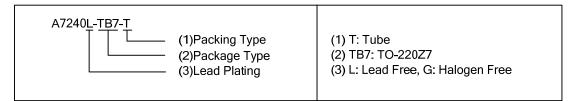
LINEAR INTEGRATED CIRCUIT

20W BRIDGE AMPLIFIER FOR **CAR RADIO**

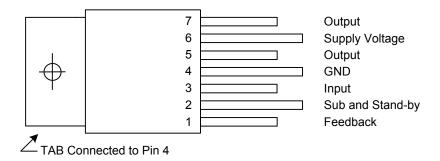

DESCRIPTION

The UTC A7240 is a 20W bridge audio amplifier IC and designed for car radio applications.

A comprehensive array of on-chip protection, include protection against AC and DC output short circuits (to ground and across the load), load dump transients, and junction over temperature, is feature to provide reliable operation. Furthermore, the UTC A7240 protects the loudspeaker when one output is short-circuited to ground.


FEATURES

- * Few External Components
- * Output Protected Against short Circuits to Ground and Across Load
- * Dump Transient
- * Thermal Shutdown
- * Loudspeaker Protection
- * High Current Capability
- * Low Distortion/Low Noise


ORDERING INFORMATION

Order I	Number	Doolsons	Packing	
Lead Free	Halogen Free	Package		
A7240L-TB7-T	A7240G-TB7-T	TO-220Z7	Tube	

www.unisonic.com.tw 1 of 6

■ PIN CONFIGURATION

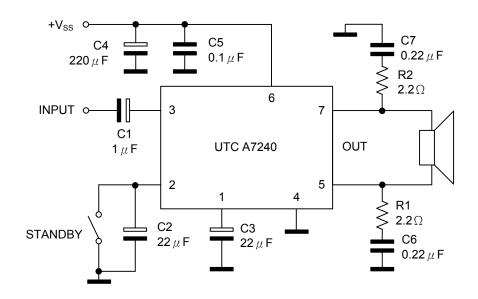
■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Operating Supply Voltage	V_{SS}	18	V
DC Supply Voltage	V_{SS}	28	V
Peak Supply Voltage (for 50ms)	$V_{SS(PEAK)}$	40	V
Peak Output Current (non repetitive t = 0.1ms)	I _{O(PEAK)} (*)	4.5	Α
Peak Output Current (repetitive f .10Hz)	I _{O(PEAK)} (*)	3.5	Α
Power Dissipation at T _C = 85°C	P_{D}	16	W
Storage and Junction Temperature	T_{STG},T_{J}	-40~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

(*) Internally limited


■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to case	θ_{JC}	4	°C/W

■ **ELECTRICAL CHARACTERISTICS**(Ta = 25°C, R_{TH} (heatsink)= 4°C/W, V_{SS} = 14.4V)

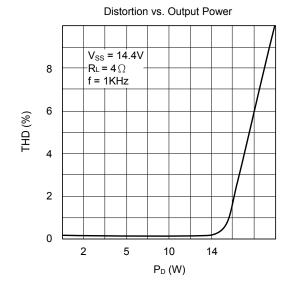
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Supply Voltage		V_{SS}					18	V	
Output Offset Voltage		$V_{O(OFF)}$					150	mV	
Total Quiescent Current		I_{Q}	$R_L = 4\Omega$			65	120	mA	
Output Dower		_	f = 1kH= d= 100/		$R_L = 4\Omega$	18	20		10/
Output Power		P_{OUT}	f = 1kHz, d= 10%		$R_L = 8\Omega$	10	12		W
Distortion		TUD	f = 1kHz, P _{OUT} = 50MW ~ 12W		$R_L = 4\Omega$		0.1	0.5	%
		THD			$R_L = 8\Omega$		0.05	0.5	
Voltage Gain		Gv	f = 1KHz			39.5	40	40.5	dB
Supply Voltage Rejection		SVR	f = 100Hz, Rg = 10KΩ		35	40		dB	
Total Input Noise		eN R	B= Curve		e A		2		
			Rg = $10K\Omega$ B = $22H$	B = 22Hz	z~22KHz		3	10	μV
Efficiency		η	$R_L = 4\Omega$, $f = 1KHz$				65		%
Input Resistance		R_{IN}	f = 1kHz		70			kΩ	
Input Sensitivity		V_{IN}	$f = 1kHz$, $P_{OUT} = 2W$, $R_L = 4\Omega$			28		mV	
Francisco Pall Off (2dD)	Low	f_L	P_{OUT} = 15W, R_L =4 Ω					30	Hz
Frequency Roll Off (-3dB)	High	f_H				25			kHz
Stand-by Threshold		V _{THD (PIN2)}		•	·			1	V
Stand-by Current		ISTN-BY					200		μA
Stand-by Attenuation		A _{STN-BY}	V _{OUT} = 2Vrms	-		70	90		dB

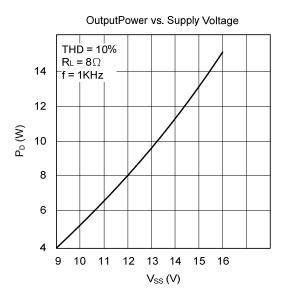
■ TEST AND APPLICATION CIRCUIT

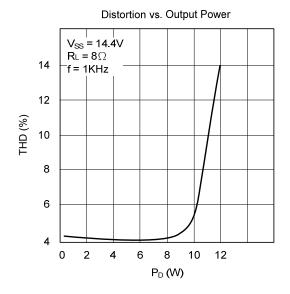
COMPONENT USAGE SUGGESTION

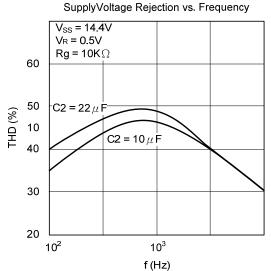
Component	Suggest	Purpose	Larger than	Smaller than
R1, R2	2.2W	Frequency Stability	Danger of High Frequency Oscillation	
C1	1µF	Input DC Decoupling	Higher Turn On and Stand-by Delay	Higher Turn On Pop. Higher Low Frequency Cutoff
C2	22µF	Ripple Rejection	Increase of SVR Increase of the Turn On Delay	Degradation of SVR
C3	22µF	Feedback low Frequency Cutoff		Higher Low Frequency Cutoff
C4	220µF	Supply Filter		Danger of Oscillation
C5	0.1µF	Supply Bypass		Danger of Oscillation
C6, C7	0.22µF	Frequency Stability		Danger of Oscillation

■ TYPICAL CHARACTERISTICS


OutputPower vs. Supply Voltage Vss = 10% $RL = 4\Omega$ f = 1KHz14


10


6


9 10 11 12 13 14 15

V_S (V)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below:

LV3313PM-TLM-E LV47002P-E AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G IS31AP4915A-QFLS2-TR TDA1591T AS3561-BWLT-500 TDA7563AH TDA7850H TS2012EIJT NCP2809BMUTXG NJW1157BFC2 IS31AP4996-GRLS2-TR NCP2823BFCT1G LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT MP1720DH-12-LF-P SABRE9601K THAT1646W16-U PAM8965ZLA40-13 TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX BD37532FV-E2 BD5638NUX-TR BD37543FS-E2 BD3814FV-E2 TPA3110LD2PWPR AS3435-EQFP VA2218TSG28 TAS5766MRMTR TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 TFA9879HN/N1,118 AS3410-EQFP-500 FDA4100LV TPA3140D2PWP BD3812F-E2 MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP4894FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1