

UTC UNISONIC TECHNOLOGIES CO., LTD

LM386

LINEAR INTEGRATED CIRCUIT

LOW VOLTAGE AUDIO POWER AMPLIFIER

DESCRIPTION

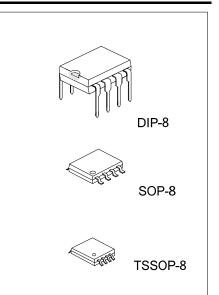
The UTC LM386 is a power amplifier, designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pin 1 and pin 8 will increase the gain to any value up from 20 to 200 dB.

The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

FEATURES

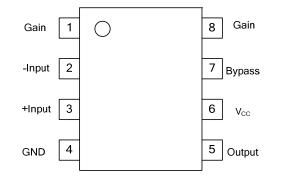
*Battery Operation *Minimum External Parts *Wide Supply Voltage Range: 4V~12V *Low Quiescent Current Drain:4mA *Voltage Gains: 20~200dB *Ground Referenced Input *Self-Centering Output Quiescent Voltage *Low Distortion: 0.2% (Av=20, V_S=6V, R_L=8Ω, P_O=125mW, f=1kHz)

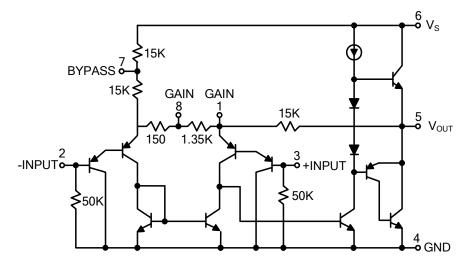
ORDERING INFORMATION


Ordering Number		Dookago	Dooking	
Lead Free	Halogen Free	Package	Packing	
LM386L-D08-T	LM386G-D08-T	DIP-8	Tube	
-	LM386G-S08-R	SOP-8	Tape Reel	
-	LM386G-P08-R	TSSOP-8	Tape Reel	

LM386L-D08-T			
ŢŢŢ	(1)Packing Type	(1) T: Tube, R: Tape Reel	
	(2)Package Type	(2) D08: DIP-8, S08: SOP-8, P08: TSSOP-8	
	(3)Green Package	(3) L: Lead Free, G: Halogen Free and Lead Free	

MARKING


DIP-8	SOP-8	TSSOP-8			
8 7 6 5 UTC □□□□ LM386□ CHalogen Free 1 2 3 4 Barrier Code	8 7 6 5 UTC□□□□ LM386G • □□ 1 2 3 4 Lot Code	● UTC □□□□ LM386G → Date Code □□ → Lot Code			



LM386

PIN CONFIGURATION

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	15	V
Input Voltage		V _{IN}	-0.4V ~ +0.4V	V
Power Dissipation	DIP-8	P _D	1250	
	SOP-8		600	mW
	TSSOP-8		600	
Operating Temperature		T _{OPR}	-25 ~ +85	°C
Junction Temperature		TJ	+125	°C
Storage Temperature		T _{STG}	-40 ~ +150	°C

Note:1. Absolute maximum ratings are stress ratings only and functional device operation is not implied. The device could be damaged beyond Absolute maximum ratings.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified.)

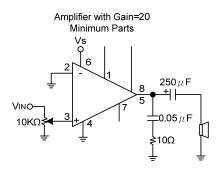
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
				ПР			
Operating Supply Voltage	Vs		4		12	V	
Quiescent Current	lq	V _S =6V, V _{IN} =0		4	8	mA	
Output Power	Р	V _S =6V, R _L =8Ω, THD=10%	250	325		mW	
	Pout	V _S =9V, R _L =8Ω, THD=10%	500	700		mvv	
Voltage Gain	Gv	V _S =6V, f=1kHz		26		dB	
		10µF from pin 1 to pin 8		46		dB	
Bandwidth	BW	V _S =6V , Pin1 and pin 8 open		300		kHz	
Total Harmonic Distortion	I IHI)	P _{OUT} =125mW, V _S =6V, f=1kHz				%	
		R _L =8Ω pin1 and pin 8 open		0.2			
Rejection Ratio	I RR	V _S =6V, f=1kHz, C _{BYPASS} =10µF	t 50				
		pin1and pin 8 open, Referred to output				dB	
Input Resistance	R _{IN}			50		kΩ	
Input Bias Current	I _{BIAS}	V _S =6V Pin2 and pin 3 open		250		nA	

APPLICATION NOTES

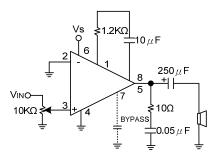
GAIN CONTROL

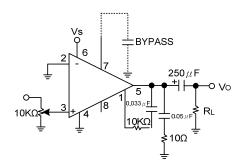
To make the **LM386** a more versatile amplifier, two pins(1and 8) are provided for gain control. With pins 1 and 8 open the 1.35 k Ω resistor sets the gain at 20 (26dB), If a capacitor is put from pin 1 to 8, bypassing the 1.35 k Ω resistor, the gain will go up to 200(46dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

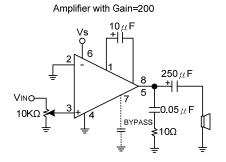
Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal 15 k Ω resistor). For 6 dB effective bass boost: R=15 k Ω , the lowest value for good stable operation is R=10 k Ω , if pin 8 is open, If pins 1 and 8 are bypassed then R as low as 2 k Ω can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

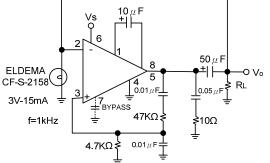

INPUT BIASING

The schematic shows that both inputs are biased to ground with a 50 k Ω resistor. The base current of the input transistors is about 250nA, so the inputs are at about 12.5mW when left open. If the dc source resistance driving the **LM386** is higher than 250 k Ω it will contribute very little additional offset (about 2.5mW at the input, 50mW at the output). If the dc source resistance is less than 10 k Ω , then shorting the unused input to ground will keep the offset low (about 2.5mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

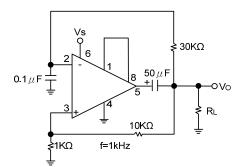

When using the **LM386** with higher gains (bypassing the 1.35 k Ω resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a 0.1µF capacitor or a short to ground depending on the dc source resistance on the driven input.

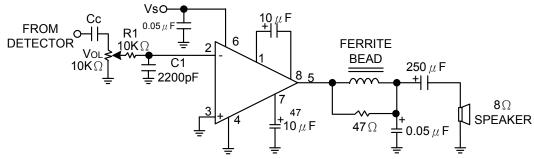

TYPICAL APPLICATIONS CIRCUIT





Amplifier with Bass Boost

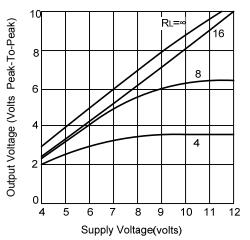


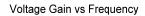

Low Distortion Power Wienbridge Oscillator 390Ω

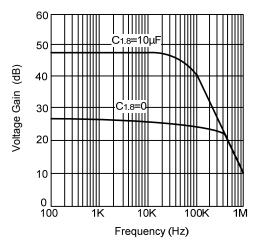
Square Ware Oscillator

Notes: 1: Twist Supply lead and supply ground very tightly.

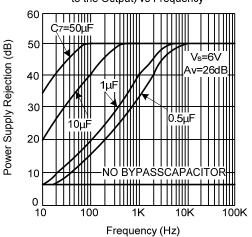
- 2: Twist speaker lead and ground very tightly.
- 3: Ferrite bead in Ferroxcube K5-001-001/3B with 3 turns of wire.
- 4: R1C1 band limits input signals.
- 5: All components must be spaced very closely to IC.

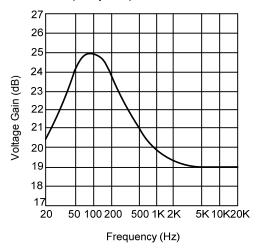

LM386

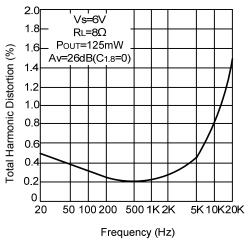

TYPICAL CHARACTERISTICS



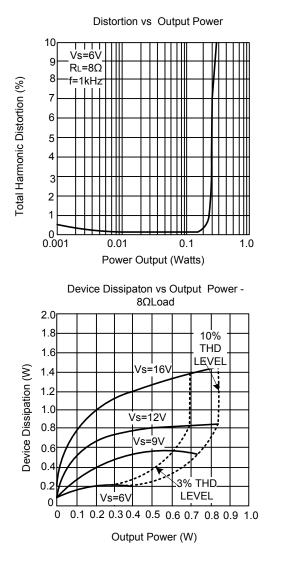
Quiescent Supply Current vs Supply Voltage

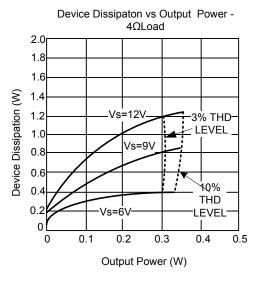

Peak-to -Peak Output Voltage Swing vs Supply Voltage

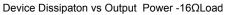



Power Supply Rejection Ratio(Referred to the Output) vs Frequency

Frequency Response With Bass Boost







LM386

TYPICAL CHARACTERISTICS(cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below :

LV3313PM-TLM-E LV47002P-E AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G NCP2993FCT2G LA4631VC-XE IS31AP4915A-QFLS2-TR TDA1591T AS3561-BWLT-500 TDA7563AH TDA7850H TS2012EIJT NCP2809BMUTXG NJW1157BFC2 IS31AP4996-GRLS2-TR NCP2823BFCT1G LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT MP1720DH-12-LF-P SABRE9601K THAT1646W16-U PAM8965ZLA40-13 TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX BD37532FV-E2 BD5638NUX-TR BD37543FS-E2 BD3814FV-E2 TPA3110LD2PWPR AS3435-EQFP VA2218TSG28 TAS5766MRMTR TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 TFA9879HN/N1,118 AS3410-EQFP-500 FDA4100LV TPA3140D2PWP BD3812F-E2 MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP4894FCT1G NCP2823AFCT2G