

LINEAR INTEGRATED CIRCUIT

32W HI-FI AUDIO POWER AMPLIFIER

DESCRIPTION

The UTC **TDA2050** is a monolithic integrated circuit with high power capability and is designed to use as an class AB audio amplifier. It can deliver typically 50W music power into 4Ω load over 1 sec at V_S=22.5V, f = 1KHz.

The device is most suitable for both Hi-Fi and high class TV sets on the strength of its high supply voltage and very low harmonic and crossover distortion.

FEATURES

- * High output power (50W Music Power IEC 268.3 Rules)
- * High operating supply voltage (50V)
- * Single or split supply operations
- * Very low distortion
- * Short circuit protection (OUT to GND)
- * Thermal shutdown

ORDERING INFORMATION

Ordering	Daakaga	Deaking	
Lead Free	Halogen Free	Раскаде	Packing
TDA2050L-TA5-T	TDA2050G-TA5-T	TO-220-5	Tube
TDA2050L-TB5-T	TDA2050G-TB5-T	TO-220B	Tube

TDA2050L-TA5-T	
(1)Packing Type	(1) T: Tube
(2)Package Type	(2) TA5: TO-220-5, TB5: TO-220B
(3)Lead Plating	(3) L: Lead Free, G: Halogen Free

■ PIN CONFIGURATION

*TAB CONNECTED TO PIN 3

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	Vs	±25	V
Input Voltage	V _{IN}	Vs	V
Differential Input Voltage	V _{IN(DIFF)}	±15	V
Output Peak Current (internally limited)	Ι _{ουτ}	5	А
Power Dissipation T _C = 75°C	PD	25	W
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance junction-case	θ」с	3	°C/W

ELECTRICAL CHARACTERISTICS

(Refer to the Test Circuit, $V_S = \pm 18V$, $T_A = 25^{\circ}C$, f = 1 kHz, unless otherwise specified.)

`	, .	, ,,	,	, , , , , , , , , , , , , , , , , , , ,				
PARAMET	ER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Voltage		Vs			±4.5		±25	V
Quiescent Drain Current			V _S =±4.5V			18	50	mA
		I _D	V _S =±25V			21	90	
Input Bias Current		I _B	V _S =±22V			0.4	0.5	μA
Input Offset Voltage		V _{IN(OS)}	V _S =±22V				±15	mV
Input Offset Current		I _{IN(OS)}	V _S =±22V				±200	nA
			R _L =4Ω		24	27		
	D = 0.5%		R _L =8Ω			18		
			R _L =8Ω, V	s=±22V	22	25		
RIVIS Output Power		Po	R _L =4Ω			35		W
	D = 10%		R _L =8Ω			22		
			$R_1 = 8\Omega, V_S = \pm 22V$			32		
Music Power IEC268.	3 RULES		D=10%, T=1s, V _S =±22.5V, R _L =4Ω			50		
		THD		f=1kHz, P ₀ =0.1~24W		0.03	0.5	5 5 5 5
			R _L =4Ω	f =100Hz~10kHz,			0.5	
T. C. L.L.				P _o =0.1~18W			0.5	
I otal Harmonic Distor	tion		R _L =8Ω, V _S =±22V	f=1kHz, P ₀ =0.1~20W		0.02		
				f=100Hz~10kHz,			0.5	
				P _O =0.1~15W			0.5	
Slew Rate		SR			5	8		V/µs
Open Loop Voltage Gain		Gv				80		dB
Closed Loop Voltage Gain		Gv			30	30.5	31	dB
Power Bandwidth (-3dB)		Bw	R _L =4Ω, V _{IN} =200mV		20	20 ~ 80000		Hz
Total Input Noise		e _N	Curve A			4		
			B=22Hz~22kHz			5	10	μν
Input Resistance (pin 1)		R _{IN}			500			kΩ
Supply Voltage Rejection		SVR	R _s =22KΩ	, f=100Hz, V _{RIPPLE} =0.5Vrms		45		dB
Efficiency			$P_0=28W, R_L=4\Omega$			65		%
		η	$P_0=25W, R_1=8\Omega, V_8=\pm 22V$			67		

TYPICAL APPLICATION CIRCUIT

FOR SPLIT SUPPLY APPLICATION SUGGESTIONS

Figure.1 Split Supply Typical Application Circuit

The following table demonstrates the recommended values of the external components are those shown on above circuit. Different values can be used.

		RECOMMENDED VALUE			
COMPONENT	PURPOSE	TYPICAL	LARGER	SMALLER	
R1	Input Impedance	22kΩ	Increase of Input Impedance	Decrease of Input Impedance	
R2	Feedback Resistor	680Ω	Decrease of Gain*	Increase of Gain	
R3		22kΩ	Increase of Gain	Decrease of Gain*	
R4	Frequency Stability	2.2Ω	Danger of Oscillations		
C1	Input Decoupling DC	1µF		Higher Low-frequency cut-off	
C2	Inverting Input DC Decoupling	22µF	Increase of Switch ON/OFF Noise	Higher Low-frequency cut-off	
C3, C4	Supply Voltage Bypass	100nF		Danger of Oscillations	
C5, C6	Supply Voltage Bypass	220µF		Danger of Oscillations	
C7	Frequency Stability	0.47µF		Danger of Oscillations	

* The gain must be higher than 24dB

■ TYPICAL APPLICATION CIRCUIT(CONT.)

FOR SINGLE SUPPLY APPLICATION SUGGESTIONS

Figure.2 Single Supply Typical Application Circuit

The following table demonstrates the recommended values of the external components are those shown on above circuit. Different values can be used.

COMPONENT	PURPOSE	RECOMMENDED VALUE			
		TYPICAL	LARGER	SMALLER	
R1, R2, R3	Biasing Resistor	22kΩ			
R4	Foodbook Dopistor	680Ω	Decrease of Gain*	Increase of Gain	
R5	reeuback Resistor	22kΩ	Increase of Gain	Decrease of Gain*	
R6	Frequency Stability	2.2Ω	Danger of Oscillations		
C1	Non-Inverting Input Decoupling DC	2.2µF		Higher Low-frequency cut-off	
C2	Supply Voltage Rejection	100µF	Worse Turn-off Transient Worse Turn-on Delay		
C3	Supply Voltage Bypass	1000µF		Danger of Oscillations Worse of Turn-off Transient	
C4	Inverting Input DC Decoupling	22µF	Increase of Switch ON/OFF	Higher Low-frequency cut-off	
C5	Supply Voltage Bypass	100nF		Danger of Oscillations	
C6	Frequency Stability	0.47µF		Danger of Oscillations	
C7	Output DC Decoupling	1000µF		Higher Low-frequency cut-off	

* The gain must be higher than 24dB

Note: If the supply voltage is lower than 40V and the load is 8Ω (or more), a lower value of C2(i.e. 22µF) can be used. C7 can be larger than 1000µF only if the supply voltage does not exceed 40V.

LINEAR INTEGRATED CIRCUIT

TYPICAL CHARACTERISTICS (Split Supply Test Circuit, unless otherwise specified)

40

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below :

LV3313PM-TLM-E LV47002P-E AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G IS31AP4915A-QFLS2-TR TDA1591T AS3561-BWLT-500 TDA7563AH TDA7850H TS2012EIJT NCP2809BMUTXG NJW1157BFC2 IS31AP4996-GRLS2-TR NCP2823BFCT1G LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT MP1720DH-12-LF-P SABRE9601K THAT1646W16-U PAM8965ZLA40-13 TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX BD37532FV-E2 BD5638NUX-TR BD37543FS-E2 BD3814FV-E2 TPA3110LD2PWPR AS3435-EQFP VA2218TSG28 TAS5766MRMTR TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 TFA9879HN/N1,118 AS3410-EQFP-500 FDA4100LV TPA3140D2PWP BD3812F-E2 MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP4894FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1