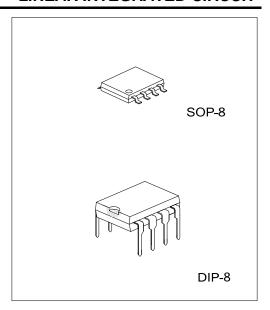
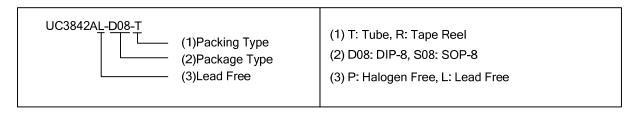
# UC3842A/3843A

## LINEAR INTEGRATED CIRCUIT


# CURRENT MODE PWM CONTROL CIRCUITS

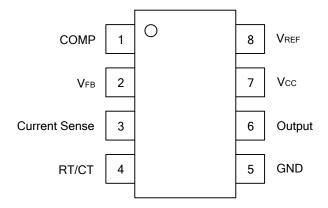
## ■ DESCRIPTION

The UTC **UC3842A/3843A** provide the necessary functions to implement off-line or DC to DC fixed frequency current mode , controlled switching circuits with minimal external components.

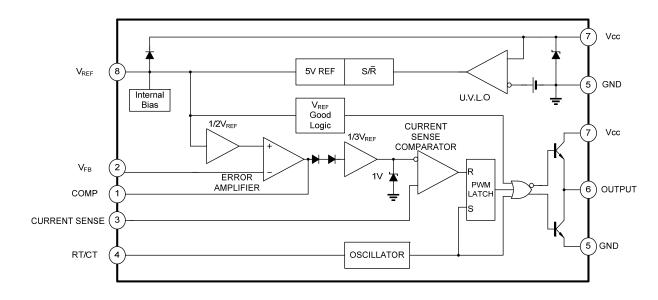

## **■** FEATURES

- \*Low Start Up Current (Typical 0.12mA)
- \*Automatic Feed Forward Compensation
- \*Pulse-by-Pulse Current Limiting
- \*Under-voltage Lockout with Hysteresis
- \*Double Pulse Suppression
- \*High Current Totem Pole Output to Drive MOSFET Directly
- \*Internally Trimmed Band Gap Reference
- \*500kHz Operation




## **■ ORDERING INFORMATION**

| Ordering       | Number         | Daakaga | Packing   |  |
|----------------|----------------|---------|-----------|--|
| Lead Free      | Halogen Free   | Package |           |  |
| UC3842AL-D08-T | UC3842AP-D08-T | DIP-8   | Tube      |  |
| UC3842AL-S08-R | UC3842AP-S08-R | SOP-8   | Tape Reel |  |
| UC3842AL-S08-T | UC3842AP-S08-T | SOP-8   | Tube      |  |
| UC3843AL-D08-T | UC3843AP-D08-T | DIP-8   | Tube      |  |
| UC3843AL-S08-R | UC3843AP-S08-R | SOP-8   | Tape Reel |  |
| UC3843AL-S08-T | UC3843AP-S08-T | SOP-8   | Tube      |  |




www.unisonic.com.tw 1 of 9

## **■ PIN CONFIGURATION**



## **■ BLOCK DIAGRAM**



## ■ ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                                |       | SYMBOL                | RATINGS            | UNIT       |
|------------------------------------------|-------|-----------------------|--------------------|------------|
| Supply Voltage(Low Impedance Source)     |       | V <sub>CC</sub>       | 30                 | V          |
| Supply Voltage(I <sub>CC</sub> <30mA)    |       | V <sub>CC</sub>       | Self Limiting      | V          |
| Analog Inputs (Pin 2,3)                  |       | $V_{I(ANA)}$          | -0.3 ~ +6.3        | V          |
| Output Current (Peak )                   |       | I <sub>O(PEAK)</sub>  | ±1                 | А          |
| Error Amplifier Output Sink Current      |       | I <sub>SINK(EA)</sub> | 10                 | mA         |
| Output Energy (Capacity Load)            |       |                       | 5                  | μJ         |
| Power Dissipation( T <sub>A</sub> ≦25°C) | DIP-8 |                       | 1250               | \/         |
| Fower Dissipation ( TA \( \frac{1}{2} \) | SOP-8 | P <sub>D</sub>        | 800                | mW         |
| Derated at T <sub>A</sub> >25℃           |       |                       | 8                  | mW/℃       |
| Junction Temperature                     |       | TJ                    | +150               | $^{\circ}$ |
| Storage Temperature                      |       | T <sub>STG</sub>      | -65 ~ <b>+</b> 150 | $^{\circ}$ |

Note Absolute maximum ratings are those values beyond which the device which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

## ■ ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \leq T_A \leq 70^{\circ}C, V_{CC}=15V, R_T=10k\Omega, C_T=3.3nF, unless otherwise specified)$ 

| REFERENCE SECTION           Output Voltage $V_{REF}$ $T_J$ =25°C, $I_{OUT}$ =1mA         4.9         5         5.1         N           Line Regulation $\Delta V_{REF}$ $12 \le V_{IN}25V$ 6         20         m           Load Regulation $\Delta V_{REF}$ $1 \le I_{OUT}$ =20mA         6         25         m           Temperature Stability         (Note 1)         0.2         0.4         mV           Total Output Variation         Line, Load, Temp (Note 1)         4.82         5.18         N           Output Noise Voltage         Vosc $10Hz \le f \le 10kHz$ , $T_J$ =25°C (Note 1)         50         µ           Long Term Stability $T_A$ =25°C, 1000Hrs (Note 1)         5         2.5         m           Output Short Circuit $I_{SC}$ -30         -100         -180         m           OSCILLATOR SECTION           Initial Accuracy         f $T_J$ =25°C         47         52         57         kt           Voltage Stability $\Delta f/\Delta V_{CC}$ $12 \le V_{CC} \le 25V$ 0.2         1         9           Amplitude $V_{OSC}$ $V_{PINA}$ = 2.5V         2.42         2.50         2.58         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(0.0 \le 1.4 \le 1.0.0)$ , ACC-12A, KL-10 | K12, C†−3.3HI            | , unless otherwise specified)                   |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|-------------------------------------------------|------|------|------|------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PARAMETER                                  | SYMBOL                   | TEST CONDITIONS                                 | MIN  | TYP  | MAX  | UNIT |
| Line Regulation $\Delta V_{REF}$ $12 \le V_{IN}25V$ 620mLoad Regulation $\Delta V_{REF}$ $1 \le I_{OUT} = 20mA$ 625mTemperature Stability(Note 1)0.20.4mVTotal Output VariationLine, Load, Temp (Note 1)4.825.18VOutput Noise Voltage $V_{OSC}$ $10Hz \le f \le 10kHz$ , $T_J = 25 °C$ (Note 1)50 $\mu$ Long Term Stability $T_A = 25 °C$ , 1000Hrs (Note 1)525mOSCILLATOR SECTIONInitial Accuracyf $T_J = 25 °C$ 475257kHVoltage Stability $\Delta f/\Delta V_{CC}$ $12 \le V_{CC} \le 25V$ 0.219Temperature Stability $T_{MIN} \le T_A \le T_{MAX}$ (Note 1)59Amplitude $V_{OSC}$ $V_{PIN4}$ peak to peak1.71ERROR AMPLIFIER SECTIONInput Voltage $V_{I(EA)}$ $V_{PIN1} = 2.5V$ 2.422.502.58NInput Bias Current $I_{I(BIAS)}$ $-0.3$ -2 $\mu$ AVOL $2V \le V_{OUT} \le 4V$ 6090dUnity Gain Bandwidth $T_J = 25 °C$ (Note 1)0.71MIPSRR $I_2 \le V_{CC} \le 25V$ 6070dOutput Sink Current $I_{O(SINK)}$ $V_{PIN2} = 2.3V, V_{PIN1} = 5V$ -0.5-0.8mVout High $V_{OH}$ $V_{PIN2} = 2.3V, V_{PIN1} = 5V$ -0.5-0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REFERENCE SECTION                          |                          |                                                 |      |      |      |      |
| Load Regulation $\Delta V_{REF}$ 1 ≤ I <sub>OUT</sub> =20mA 6 25 m Temperature Stability (Note 1) 0.2 0.4 mV Total Output Variation Line, Load, Temp (Note 1) 4.82 5.18 V Total Output Noise Voltage $V_{OSC}$ 10Hz ≤ f ≤ 10kHz, T <sub>J</sub> =25°C (Note 1) 50 $\mu$ Coutput Short Circuit I <sub>SC</sub> -30 -100 -180 m OSCILLATOR SECTION Initial Accuracy f T <sub>J</sub> =25°C $V_{OUT}$ 12 ≤ $V_{CC}$ ≤ 25V 0.2 1 9 Temperature Stability $V_{OSC}$ 12 ≤ $V_{CC}$ ≤ 25V 0.2 1 9 Temperature Stability $V_{OSC}$ 12 ≤ $V_{CC}$ ≤ 25V 0.2 1 9 Temperature Stability $V_{OSC}$ 12 ≤ $V_{CC}$ 2.50 2.58 $V_{CC}$ 1.70 Minute $V_{CC}$ 2.70 Minute $V_{CC}$ 3.70 Minute $V_{CC}$ 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Output Voltage                             | $V_{REF}$                | T <sub>J</sub> =25℃,I <sub>OUT</sub> =1mA       | 4.9  | 5    | 5.1  | V    |
| Temperature Stability (Note 1) 0.2 0.4 mV Total Output Variation Line, Load, Temp (Note 1) 4.82 5.18 V Output Noise Voltage $V_{OSC}$ 10Hz $\leq$ f $\leq$ 10kHz, T, =25°C (Note 1) 50 $\mu$ Long Term Stability T <sub>A</sub> =25°C, 1000Hrs (Note 1) 5 25 m Output Short Circuit I <sub>SC</sub> -30 -100 -180 m OSCILLATOR SECTION Initial Accuracy f T <sub>J</sub> =25°C 47 52 57 kH Voltage Stability $\Delta$ f/ $\Delta$ V <sub>CC</sub> 12 $\leq$ V <sub>CC</sub> $\leq$ 25V 0.2 1 $\leq$ 9 Yoltage Stability Temperature Stability $V_{OSC}$ V <sub>PIN4</sub> peak to peak 1.7 $V_{OSC}$ V <sub>PIN4</sub> peak to peak 1.7 $V_{OSC}$ V <sub>PIN4</sub> peak to peak 1.7 $V_{OSC}$ V <sub>PIN5</sub> $V_{OSC}$ V <sub>PIN6</sub> $V_{OSC}$ V <sub>PIN7</sub> $V_{OSC}$ V <sub>PIN7</sub> $V_{OSC}$ V <sub>PIN8</sub> $V_{OSC}$ V <sub>PIN9</sub> $V_{OSC}$ V <sub>OSC</sub> V <sub>OSC</sub> $V_{OSC}$ V <sub>OSC</sub> V <sub>OSC</sub> $V_{OSC}$ V <sub>OSC</sub> V <sub>OSC</sub> V <sub>OSC</sub> $V_{OSC}$ V <sub>OSC</sub> | Line Regulation                            | $\Delta V_{REF}$         | $12 \! \leq \! V_{IN}25V$                       |      | 6    | 20   | mV   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Load Regulation                            | $\Delta V_{REF}$         | $1 \le I_{OUT}$ =20mA                           |      | 6    | 25   | mV   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature Stability                      |                          | (Note 1)                                        |      | 0.2  | 0.4  | mV/℃ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Output Variation                     |                          | Line, Load, Temp (Note 1)                       | 4.82 |      | 5.18 | V    |
| Output Short Circuit $I_{SC}$ -30-100-180mOSCILLATOR SECTIONInitial Accuracyf $T_J=25^{\circ}C$ 475257kHVoltage Stability $\Delta f/\Delta V_{CC}$ $12 \le V_{CC} \le 25V$ 0.219Temperature Stability $T_{MIN} \le T_A \le T_{MAX}$ (Note 1)59Amplitude $V_{OSC}$ $V_{PIN4}$ peak to peak1.71ERROR AMPLIFIER SECTIONInput Voltage $V_{I(EA)}$ $V_{PIN1}=2.5V$ 2.422.502.58\mathred{N}Input Bias Current $I_{I(BIAS)}$ -0.3-2 $\mu$ AVOL $2V \le V_{OUT} \le 4V$ 6090dUnity Gain Bandwidth $T_J=25^{\circ}C$ (Note 1)0.71MIPSRR $I_2 \le V_{CC} \le 25V$ 6070dOutput Sink Current $I_{O(SINK)}$ $V_{PIN2}=2.7V, V_{PIN1}=1.1V$ 26mOutput Source Current $I_{O(SOURCE)}$ $V_{PIN2}=2.3V, V_{PIN1}=5V$ -0.5-0.8m $V_{OUT}$ High $V_{OH}$ $V_{PIN2}=2.3V, R_L=15k\Omega$ to GND56\mathred{N}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Output Noise Voltage                       | Vosc                     | 10Hz≦f≦10kHz,T <sub>J</sub> =25°C (Note 1)      |      | 50   |      | μV   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Long Term Stability                        |                          | T <sub>A</sub> =25℃,1000Hrs (Note 1)            |      | 5    | 25   | mV   |
| Initial Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Output Short Circuit                       | I <sub>SC</sub>          |                                                 | -30  | -100 | -180 | mA   |
| Voltage Stability $\Delta f/\Delta V_{CC}$ $12 \le V_{CC} \le 25V$ 0.219Temperature Stability $T_{MIN} \le T_A \le T_{MAX}$ (Note 1)59Amplitude $V_{OSC}$ $V_{PIN4}$ peak to peak1.7 $V_{OSC}$ ERROR AMPLIFIER SECTIONInput Voltage $V_{I(EA)}$ $V_{PIN1} = 2.5V$ 2.422.502.58 $V_{OSC}$ Input Bias Current $I_{I(BIAS)}$ -0.3-2 $\mu$ AVOL $2V \le V_{OUT} \le 4V$ 6090dUnity Gain Bandwidth $T_{J} = 25 \ C$ (Note 1)0.71MIPSRR $I_{2} \le V_{CC} \le 25V$ 6070dOutput Sink Current $I_{O(SINK)}$ $V_{PIN2} = 2.7V, V_{PIN1} = 1.1V$ 26mOutput Source Current $I_{O(SOURCE)}$ $V_{PIN2} = 2.3V, V_{PIN1} = 5V$ -0.5-0.8m $V_{OUT}$ High $V_{OH}$ $V_{PIN2} = 2.3V, V_{PIN1} = 5V$ -0.5-0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OSCILLATOR SECTION                         |                          |                                                 |      |      |      |      |
| Temperature Stability $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initial Accuracy                           | f                        | TJ=25℃                                          | 47   | 52   | 57   | kHz  |
| Amplitude $V_{OSC}$ $V_{PIN4}$ peak to peak         1.7 $V_{OSC}$ ERROR AMPLIFIER SECTION           Input Voltage $V_{I(EA)}$ $V_{PIN1}=2.5V$ 2.42         2.50         2.58 $V_{II}$ Input Bias Current $I_{I(BIAS)}$ -0.3         -2 $µ$ AVOL $2V \le V_{OUT} \le 4V$ 60         90         d           Unity Gain Bandwidth $T_{J}=25^{\circ}C$ (Note 1)         0.7         1         MI           PSRR $I_{2} \le V_{CC} \le 25V$ 60         70         d           Output Sink Current $I_{O(SINK)}$ $V_{PIN2}=2.7V, V_{PIN1}=1.1V$ 2         6         m           Output Source Current $I_{O(SOURCE)}$ $V_{PIN2}=2.3V, V_{PIN1}=5V$ -0.5         -0.8         m $V_{OUT}$ High $V_{OH}$ $V_{PIN2}=2.3V, V_{PIN1}=5V$ 5         6 $V_{OH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Voltage Stability                          | $\Delta f/\Delta V_{CC}$ | 12≦V <sub>CC</sub> ≦25V                         |      | 0.2  | 1    | %    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temperature Stability                      |                          | $T_{MIN} \le T_A \le T_{MAX}$ (Note 1)          |      | 5    |      | %    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Amplitude                                  | Vosc                     | V <sub>PIN4</sub> peak to peak                  |      | 1.7  |      | V    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ERROR AMPLIFIER SECTION                    |                          |                                                 |      |      |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input Voltage                              | $V_{I(EA)}$              | V <sub>PIN1</sub> =2.5V                         | 2.42 | 2.50 | 2.58 | V    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input Bias Current                         | I <sub>I(BIAS)</sub>     |                                                 |      | -0.3 | -2   | μΑ   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVOL                                       |                          | $2V \leq V_{OUT} \leq 4V$                       | 60   | 90   |      | dB   |
| Output Sink Current $I_{O(SINK)}$ $V_{PIN2}$ =2.7V, $V_{PIN1}$ =1.1V         2         6         m           Output Source Current $I_{O(SOURCE)}$ $V_{PIN2}$ =2.3V, $V_{PIN1}$ =5V         -0.5         -0.8         m           V <sub>OUT</sub> High $V_{OH}$ $V_{PIN2}$ =2.3V, $V_{PIN2}$ =15kΩ to GND         5         6         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unity Gain Bandwidth                       |                          | T <sub>J</sub> =25°C (Note 1)                   | 0.7  | 1    |      | MHz  |
| Output Source Current $I_{O(SOURCE)}$ $V_{PIN2}$ =2.3V, $V_{PIN1}$ =5V -0.5 -0.8 mt $V_{OUT}$ High $V_{OH}$ $V_{PIN2}$ =2.3V, $V_{RL}$ =15k $\Omega$ to GND 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PSRR                                       |                          | $I_2 \leq V_{CC} \leq 25V$                      | 60   | 70   |      | dB   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Output Sink Current                        | I <sub>O(SINK)</sub>     | V <sub>PIN2</sub> =2.7V,V <sub>PIN1</sub> =1.1V | 2    | 6    |      | mA   |
| 011 1112 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Output Source Current                      |                          | V <sub>PIN2</sub> =2.3V,V <sub>PIN1</sub> =5V   | -0.5 | -0.8 |      | mA   |
| $V_{OUT}$ Low $V_{OL}$ $V_{PIN2}$ =2.7 $V$ , $V_{PIN1}$ =1.1 $V$ 0.7 1.1 $V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>OUT</sub> High                      | V <sub>OH</sub>          | $V_{PIN2}$ =2.3V, $R_L$ =15k $\Omega$ to GND    | 5    | 6    |      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>OUT</sub> Low                       | V <sub>OL</sub>          | V <sub>PIN2</sub> =2.7V,V <sub>PIN1</sub> =1.1V |      | 0.7  | 1.1  | V    |

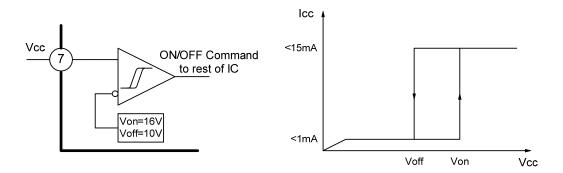
## **■** ELECTRICAL CHARACTERISTICS(Cont.)

| PARAMETER                     |                                      | SYMBOL                | TEST CONDITIONS                          | MIN  | TYP  | MAX  | UNIT |  |
|-------------------------------|--------------------------------------|-----------------------|------------------------------------------|------|------|------|------|--|
| CURRENT SENSE SECTION         |                                      |                       |                                          |      |      |      |      |  |
| Gain                          |                                      | G <sub>V</sub>        | (Note 2, 3)                              | 2.85 | 3    | 3.15 | V/V  |  |
| Maximum Input signal          |                                      | $V_{I(MAX)}$          | V <sub>PIN1</sub> =5V( Note 2)           | 0.9  | 1    | 1.1  | V    |  |
| PSRR                          |                                      |                       | 12V ≦ V <sub>CC</sub> ≦ 25V              |      | 70   |      | dB   |  |
| Input Bias Current            |                                      | I <sub>BIAS</sub>     |                                          |      | -2   | -10  | μА   |  |
| Delay to Output               |                                      |                       | V <sub>PIN3</sub> =0 to 2V               |      | 150  | 300  | ns   |  |
| OUTPUT SECTION                | OUTPUT SECTION                       |                       |                                          |      |      |      |      |  |
|                               | Low                                  | V <sub>OL</sub>       | I <sub>O(SINK)</sub> =20mA               |      | 0.1  | 0.4  | V    |  |
| Output Level                  | LOW                                  | V OL                  | I <sub>O(SINK)</sub> =200mA              |      | 1.5  | 2.2  | V    |  |
| Output Level                  | ∐iah                                 | V <sub>OH</sub>       | I <sub>O(SOURCE)</sub> =20mA             | 13   | 13.5 |      | V    |  |
|                               | High                                 |                       | I <sub>O(SOURCE)</sub> =200mA            | 12   | 13.5 |      | V    |  |
| Rise Time                     |                                      | t <sub>R</sub>        | $T_J=25^{\circ}C$ , $C_L=1$ nF (Note 1)  |      | 50   | 150  | ns   |  |
| Fall Time                     |                                      | t <sub>F</sub>        | $T_J=25^{\circ}C$ , $C_L=1$ nF (Note 1)  |      | 50   | 150  | ns   |  |
| UNDER-VOLTAGE LOCK            | UNDER-VOLTAGE LOCKOUT OUTPUT SECTION |                       |                                          |      |      |      |      |  |
| Start Threshold               | 3842A                                | V <sub>TH(ST)</sub>   |                                          | 14.5 | 16   | 17.5 | V    |  |
| Start The Short               | 3843A                                |                       |                                          | 7.8  | 8.4  | 9    | V    |  |
| Min. Operating Voltage        | 3842A                                | V <sub>OPR(MIN)</sub> | After Turn On                            | 8.5  | 10   | 11.5 | V    |  |
| win. Operating voitage        | 3843A                                |                       |                                          | 7    | 7.6  | 8.2  | V    |  |
| PWM SECTION                   |                                      |                       |                                          |      |      |      |      |  |
| Duty Cycle                    | MAX                                  | D <sub>(MAX)</sub>    |                                          | 95   | 97   | 100  | %    |  |
|                               | MIN                                  | D <sub>(MIN)</sub>    |                                          |      |      | 0    | %    |  |
| TOTAL STANDBY CURR            | ENT                                  |                       |                                          |      |      |      |      |  |
| Start-up Current              |                                      | I <sub>ST</sub>       |                                          |      | 0.12 | 0.3  | mA   |  |
| Operating Supply Current      |                                      | I <sub>CC(OPR)</sub>  | V <sub>PIN2</sub> =V <sub>PIN3</sub> =0V |      | 11   | 17   | mA   |  |
| V <sub>CC</sub> Zener Voltage |                                      | $V_z$                 | I <sub>CC</sub> =25mA                    |      | 34   |      | V    |  |


Note:1. These parameters, although guaranteed, are not 100% tested in production.

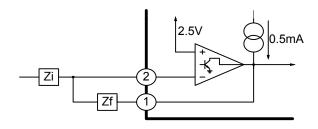
- 2. Parameters measured at trip point of latch with V<sub>PIN 2</sub>=0.
- 3. Gain defined as:

$$A = \frac{\mathbb{I} \ V_{PIN1}}{\mathbb{I} \ V_{PIN3}} \ ; 0 \mathbb{I} \ V_{PIN3} \mathbb{I} \ 0.8 V$$


4. Adjust  $V_{CC}$  above the start threshold before setting at 15V.

## **■** OPEN-LOOP LABORATORY TEST FIXTURE




High peak current associated with capacity loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to Pin 5 in single point GND. The transistor and  $5k\Omega$  potentio-meter are used to sample the oscillator waveform and apply an adjustable Ramp to Pin 3.

#### ■ UNDER-VOLTAGE LOCKOUT



During Under-Voltage Lockout, the output driver is biased to a high impedance state. Pin 6 should be shunt to GND with a bleeder resistor to prevent activating the power switch with output leakage currents.

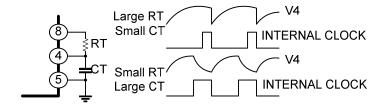
#### ■ ERROR AMPLIFIER CONFIGURATION

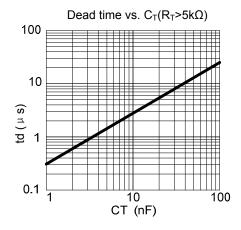


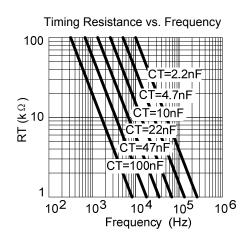
Error amplifier can source or sink up to 0.5mA

## **■ CURRENT SENSE CIRCUIT**

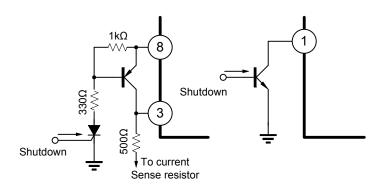



Peak current (Is) determined by the formula:  $I_{SMAX}$ =1.0V/Rs. A small RC filter be required to suppress switch transients.


## **■ SLOPE COMPENSATION**




A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converts requiring duty cycles over 50%. Note that capacitor C, forms a filter with R2 to suppress the leading edge switch spikes.

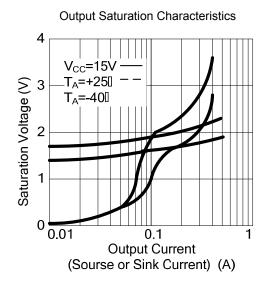

## OSCILLATOR SECTION

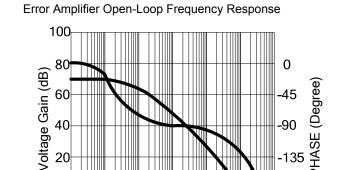






## ■ SHUTDOWN TECHNIQUES

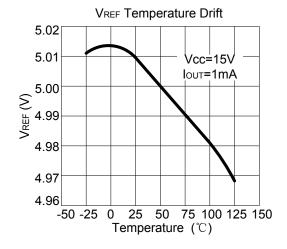


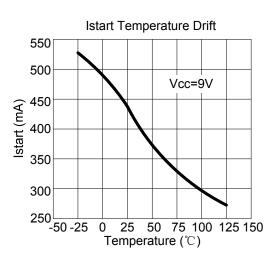


Shutdown UTC **UC3842A** can be accomplished by two methods; either raise Pin 3 above 1V or pull Pin 1 below a voltage two diode drops above ground. Either method caused the output of PWM comparator to be high(refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at Pins 1 and/or 3 is removed. In one example, an externally latched shut-down may be accomplished by adding an SCR which be reset by cycling  $V_{CC}$  below the lower UVLO threshold. At this point the reference turns off allowing the SCR to reset.

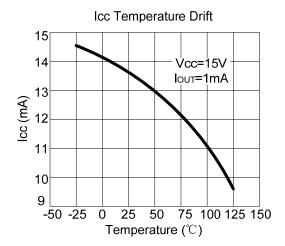
-180

106 107

## ■ TYPICAL CHARACTERISTICS





10<sup>4</sup> 10<sup>5</sup>

Frequency (Hz)

0







UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below:

LV5725JAZ-AH AP3844CMTR-EI NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG CAT874-80ULGT3 SJE6600 AZ7500BMTR-EI IR35215MTRPBF SG3845DM NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C IR35201MTRPBF AP3842CMTR-EI NCP1015ST65T3G NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NCP1612BDR2G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG TEA19362T/IJ NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1256ASN65T1G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-EREI NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G IR35204MTRPBF MCP1633T-E/MG